Home » Aptitude » Algebra » Question
  1. If   x4 +
    1
    = 47, what will be the value of x3 +
    1
    ?
    x4x3
    1. 18
    2. 17
    3. 19
    4. 20
Correct Option: A

x4 +
1
= 47
x4

⇒ (x2)2
1
2 = 47
x2

⇒ x2 +
1
2 – 2 = 47
x2

[∵  a2 + b2 = (a + b)2 – 2ab]
⇒ x2 +
1
2 = 47 + 2 = 49
x2

⇒  x2 +
1
= √49 = 7
x2

Again,  x +
1
2 – 2 = 7
x

⇒ x +
1
2 = 7 + 2 = 9
x

⇒  x +
1
= √9 = 3
x

On cubing both sides,
x +
1
3 = 33
x

⇒  x3 +
1
+ 3 x +
1
= 27
x3x

⇒  x3 +
1
+ 3 × 3 = 27
x3

⇒  x3 +
1
= 27 – 9 = 18
x3



Your comments will be displayed only after manual approval.