-
If x4 + 1 = 47, what will be the value of x3 + 1 ? x4 x3
-
- 18
- 17
- 19
- 20
Correct Option: A
x4 + | = 47 | |
x4 |
⇒ (x2)2 | ![]() | ![]() | 2 | = 47 | |
x2 |
⇒ | ![]() | x2 + | ![]() | 2 | – 2 = 47 | |
x2 |
[∵ a2 + b2 = (a + b)2 – 2ab]
⇒ | ![]() | x2 + | ![]() | 2 | = 47 + 2 = 49 | |
x2 |
⇒ x2 + | = √49 = 7 | |
x2 |
Again, | ![]() | x + | ![]() | 2 | – 2 = 7 | |
x |
⇒ | ![]() | x + | ![]() | 2 | = 7 + 2 = 9 | |
x |
⇒ x + | = √9 = 3 | |
x |
On cubing both sides,
![]() | x + | ![]() | 3 | = 33 | |
x |
⇒ x3 + | + 3 | ![]() | x + | ![]() | = 27 | ||
x3 | x |
⇒ x3 + | + 3 × 3 = 27 | |
x3 |
⇒ x3 + | = 27 – 9 = 18 | |
x3 |