-
If x4 + 1 = 47, what will be the value of x3 + 1 ? x4 x3
-
- 18
- 17
- 19
- 20
Correct Option: A
| x4 + | = 47 | |
| x4 |
| ⇒ (x2)2 | ![]() | ![]() | 2 | = 47 | |
| x2 |
| ⇒ | ![]() | x2 + | ![]() | 2 | – 2 = 47 | |
| x2 |
[∵ a2 + b2 = (a + b)2 – 2ab]
| ⇒ | ![]() | x2 + | ![]() | 2 | = 47 + 2 = 49 | |
| x2 |
| ⇒ x2 + | = √49 = 7 | |
| x2 |
| Again, | ![]() | x + | ![]() | 2 | – 2 = 7 | |
| x |
| ⇒ | ![]() | x + | ![]() | 2 | = 7 + 2 = 9 | |
| x |
| ⇒ x + | = √9 = 3 | |
| x |
On cubing both sides,
![]() | x + | ![]() | 3 | = 33 | |
| x |
| ⇒ x3 + | + 3 | ![]() | x + | ![]() | = 27 | ||
| x3 | x |
| ⇒ x3 + | + 3 × 3 = 27 | |
| x3 |
| ⇒ x3 + | = 27 – 9 = 18 | |
| x3 |

