-
If x = √3 , then √1 + x + √1 − x is equal to 2 1 + √1 + x 1 − √1 − x
-
- 1
- 2 / √3
- 2 – √3
- 2
Correct Option: B
Given x = | |
2 |
Given expression = | + | ||
1 + √1 + x | 1 − √1 − x |
= | × | + | × | ||||
1 + √1 + x | 1 − √1 + x | 1 − √1 − x | 1 + √1 − x |
= | + | ||
1 − 1 − x | 1 − 1 + x |
= | − | ||
x | x |
= | |
x |

[∵ √4 − 2√3 = √3 + 1 − 2√3
= √(√3 − 1)2 = √3 − 1]
and
[√4 + 2√3 = √3 + 1 + 2√3
= √(√3 + 1)2 = √3 + 1]
= | = | ||
√3 | √3 |