Trigonometry


  1. If α + θ =
    and tanθ = √3 , then the value of tanθ is :
    12










  1. View Hint View Answer Discuss in Forum

    tanθ = √3 = tan
    π
    3

    ⇒ θ =
    π
    3

    ∴ α + θ =
    12

    ⇒ α =
    -
    π
    123

    ⇒ α =
    7π - π
    =
    π
    124

    ∴ tanα = tan
    π
    = 1
    4

    Correct Option: B

    tanθ = √3 = tan
    π
    3

    ⇒ θ =
    π
    3

    ∴ α + θ =
    12

    ⇒ α =
    -
    π
    123

    ⇒ α =
    7π - π
    =
    π
    124

    ∴ tanα = tan
    π
    = 1
    4


  1. If cosθ + secθ = √3 , then the value of (cos3θ + sec3θ) is :









  1. View Hint View Answer Discuss in Forum

    a3 + b3 = (a + b)3 - 3ab(a + b)
    ∴ cos3θ + sec3θ = (cosθ + secθ)3 - 3cosθ . secθ(cosθ + secθ)
    cos3θ + sec3θ = ( √3 )3 - 3 × √3
    { ∵ cosθ + secθ = √3 }
    cos3θ + sec3θ = 3√3 - 3√3 = 0

    Correct Option: C

    a3 + b3 = (a + b)3 - 3ab(a + b)
    ∴ cos3θ + sec3θ = (cosθ + secθ)3 - 3cosθ . secθ(cosθ + secθ)
    cos3θ + sec3θ = ( √3 )3 - 3 × √3
    { ∵ cosθ + secθ = √3 }
    cos3θ + sec3θ = 3√3 - 3√3 = 0



  1. The value of the following is :
    sinθ cosecθ tanθ cotθ
    sin2θ + cos2θ










  1. View Hint View Answer Discuss in Forum

    Expression =
    (sinθ cosecθ) (tanθ cotθ)
    sin2θ + cos2θ

    Expression =
    1 × 1
    = 1
    1

    { ∴ sin2θ + cos2θ = 1 }

    Correct Option: A

    Expression =
    (sinθ cosecθ) (tanθ cotθ)
    sin2θ + cos2θ

    Expression =
    1 × 1
    = 1
    1

    { ∴ sin2θ + cos2θ = 1 }


  1. The value of (sec245° – cot245°) – (sin230° + sin260°) is









  1. View Hint View Answer Discuss in Forum

    sec245° – cot245° – sin230° – sin260° = (√2)2 - 1 -
    1
    2 -
    1
    2
    22

    sec245° – cot245° – sin230° – sin260° = 2 - 1 -
    1
    -
    3
    44

    sec245° – cot245° – sin230° – sin260° = 1 -
    1
    -
    3
    44

    sec245° – cot245° – sin230° – sin260° =
    3
    -
    3
    = 0
    44

    Correct Option: C

    sec245° – cot245° – sin230° – sin260° = (√2)2 - 1 -
    1
    2 -
    1
    2
    22

    sec245° – cot245° – sin230° – sin260° = 2 - 1 -
    1
    -
    3
    44

    sec245° – cot245° – sin230° – sin260° = 1 -
    1
    -
    3
    44

    sec245° – cot245° – sin230° – sin260° =
    3
    -
    3
    = 0
    44



  1. If sin 31° =
    x
    The value of sec 31° – sin 59° is
    y









  1. View Hint View Answer Discuss in Forum

    sin 31° =
    x
    y

    ∴ cos 31° = √1 - sin2 31°
    cos 31° = √1 - (x / y)2
    ⇒ cos 31° = √
    (y2- x2)
    y2

    ⇒ cos 31° =
    (y² - x²)
    y

    ∴ sec 31° =
    y
    (y² - x²)

    ∴ sec 31° - sin 59° = sec 31° - sin( 90 - 31° ) = sec 31° - cos 31°
    sec 31° - cos 31° =
    y
    -
    (y² - x²)
    (y² - x²)y

    sec 31° - cos 31° =
    y² - (y² - x²)
    y√(y² - x²)

    sec 31° - cos 31° =
    y² - y² + x²
    y√(y² - x²)

    sec 31° - cos 31° =
    y√(y² - x²)

    Correct Option: A

    sin 31° =
    x
    y

    ∴ cos 31° = √1 - sin2 31°
    cos 31° = √1 - (x / y)2
    ⇒ cos 31° = √
    (y2- x2)
    y2

    ⇒ cos 31° =
    (y² - x²)
    y

    ∴ sec 31° =
    y
    (y² - x²)

    ∴ sec 31° - sin 59° = sec 31° - sin( 90 - 31° ) = sec 31° - cos 31°
    sec 31° - cos 31° =
    y
    -
    (y² - x²)
    (y² - x²)y

    sec 31° - cos 31° =
    y² - (y² - x²)
    y√(y² - x²)

    sec 31° - cos 31° =
    y² - y² + x²
    y√(y² - x²)

    sec 31° - cos 31° =
    y√(y² - x²)