Trigonometry


  1. If sin θ + cosec θ = 2, then the value of sin9θ + cosec9θ is :









  1. View Hint View Answer Discuss in Forum

    sin θ + cosec θ = 2

    ⇒ sin θ =
    1
    = 2
    sin θ

    ⇒ sin² θ - 2 sinθ + 1 = 0
    ⇒ (sin θ - 1)² = 0
    ⇒ sin θ = 1
    ∴ cosec θ = 1
    ∴ sin9 θ + cosec9 θ = 1 + 1 = 2

    Correct Option: B

    sin θ + cosec θ = 2

    ⇒ sin θ =
    1
    = 2
    sin θ

    ⇒ sin² θ - 2 sinθ + 1 = 0
    ⇒ (sin θ - 1)² = 0
    ⇒ sin θ = 1
    ∴ cosec θ = 1
    ∴ sin9 θ + cosec9 θ = 1 + 1 = 2


  1. tan θ
    +
    cot θ
    is equal to
    1 - cot θ1 - tan θ









  1. View Hint View Answer Discuss in Forum

    Expression

    =
    tan θ
    +
    cot θ
    1 - cot θ1 - tan θ

    =
    tan θ
    +
    (1 / tan θ)
    {1 - (1 / tan θ) }1 - tan θ

    =
    tan² θ
    +
    1
    tan θ - 1tan θ(1 - tan θ)

    =
    tan² θ
    +
    1
    tan θ - 1tan θ(tan θ - 1)

    =
    tan3 θ - 1
    tan θ (tan θ - 1)

    =
    (tan θ - 1)(tan ²θ + tan θ + 1)
    tan θ (tan θ - 1)

    =
    tan ²θ + tan θ + 1
    tan θ

    = tan θ + cot θ + 1

    Correct Option: D

    Expression

    =
    tan θ
    +
    cot θ
    1 - cot θ1 - tan θ

    =
    tan θ
    +
    (1 / tan θ)
    {1 - (1 / tan θ) }1 - tan θ

    =
    tan² θ
    +
    1
    tan θ - 1tan θ(1 - tan θ)

    =
    tan² θ
    +
    1
    tan θ - 1tan θ(tan θ - 1)

    =
    tan3 θ - 1
    tan θ (tan θ - 1)

    =
    (tan θ - 1)(tan ²θ + tan θ + 1)
    tan θ (tan θ - 1)

    =
    tan ²θ + tan θ + 1
    tan θ

    = tan θ + cot θ + 1



  1. If tan θ + cot θ = 2, then the value of tan100θ + cot100θ is









  1. View Hint View Answer Discuss in Forum

    tan θ + cot θ = 2

    ⇒ tan θ +
    1
    = 2
    tan θ

    ⇒ tan²θ + 1 = 2 tanθ
    ⇒ tan²θ – 2tan θ + 1 = 0
    ⇒ (tanθ – 1)² = 0
    ⇒ tan θ = 1
    ∴ cot θ =
    1
    = 1
    tan θ

    ∴ tan100 θ + cot100 θ = 1 + 1 = 2

    Correct Option: A

    tan θ + cot θ = 2

    ⇒ tan θ +
    1
    = 2
    tan θ

    ⇒ tan²θ + 1 = 2 tanθ
    ⇒ tan²θ – 2tan θ + 1 = 0
    ⇒ (tanθ – 1)² = 0
    ⇒ tan θ = 1
    ∴ cot θ =
    1
    = 1
    tan θ

    ∴ tan100 θ + cot100 θ = 1 + 1 = 2


  1. If tan θ = 2, then the value of
    8sinθ + 5cosθ
    is :
    sin3θ + 2cos3θ + 3 cosθ









  1. View Hint View Answer Discuss in Forum

    Expression

    =
    8 sin θ + 5 cos θ
    sin3θ + 2cos3θ + 3cos θ

    Dividing numerator and denominator by cos θ,
    =
    8 tan θ + 5
    tan θ . sin²θ + 2cos²θ + 3

    =
    8 tan θ + 5
    2sin² θ + 2cos²θ + 3

    =
    8 tan θ + 5
    2(sin² θ + 2cos²θ) + 3

    =
    8 × 2 + 5
    =
    21
    55

    Correct Option: A

    Expression

    =
    8 sin θ + 5 cos θ
    sin3θ + 2cos3θ + 3cos θ

    Dividing numerator and denominator by cos θ,
    =
    8 tan θ + 5
    tan θ . sin²θ + 2cos²θ + 3

    =
    8 tan θ + 5
    2sin² θ + 2cos²θ + 3

    =
    8 tan θ + 5
    2(sin² θ + 2cos²θ) + 3

    =
    8 × 2 + 5
    =
    21
    55



  1. If
    2sinθ - cosθ
    = 1, then value of cot θ is :
    cosecθ + sinθ









  1. View Hint View Answer Discuss in Forum

    2sin θ - cos θ
    = 1
    cos θ - sin θ

    Dividing numerator and denominator by sin θ,
    2 - cot θ
    = 1
    cot θ + 1

    ⇒ 2 – cot θ = cot θ + 1
    ⇒ 2 cot θ = 1
    ⇒ cot θ =
    1
    2

    Correct Option: A

    2sin θ - cos θ
    = 1
    cos θ - sin θ

    Dividing numerator and denominator by sin θ,
    2 - cot θ
    = 1
    cot θ + 1

    ⇒ 2 – cot θ = cot θ + 1
    ⇒ 2 cot θ = 1
    ⇒ cot θ =
    1
    2