Trigonometry
-  If sin θ + cosec θ = 2, then the value of sin9θ + cosec9θ is :
- 
                        View Hint View Answer Discuss in Forum sin θ + cosec θ = 2 ⇒ sin θ = 1 = 2 sin θ 
 ⇒ sin² θ - 2 sinθ + 1 = 0
 ⇒ (sin θ - 1)² = 0
 ⇒ sin θ = 1
 ∴ cosec θ = 1
 ∴ sin9 θ + cosec9 θ = 1 + 1 = 2Correct Option: Bsin θ + cosec θ = 2 ⇒ sin θ = 1 = 2 sin θ 
 ⇒ sin² θ - 2 sinθ + 1 = 0
 ⇒ (sin θ - 1)² = 0
 ⇒ sin θ = 1
 ∴ cosec θ = 1
 ∴ sin9 θ + cosec9 θ = 1 + 1 = 2
-  tan θ + cot θ is equal to 1 - cot θ 1 - tan θ 
- 
                        View Hint View Answer Discuss in Forum Expression = tan θ + cot θ 1 - cot θ 1 - tan θ = tan θ + (1 / tan θ) {1 - (1 / tan θ) } 1 - tan θ = tan² θ + 1 tan θ - 1 tan θ(1 - tan θ) = tan² θ + 1 tan θ - 1 tan θ(tan θ - 1) = tan3 θ - 1 tan θ (tan θ - 1) = (tan θ - 1)(tan ²θ + tan θ + 1) tan θ (tan θ - 1) = tan ²θ + tan θ + 1 tan θ 
 = tan θ + cot θ + 1Correct Option: DExpression = tan θ + cot θ 1 - cot θ 1 - tan θ = tan θ + (1 / tan θ) {1 - (1 / tan θ) } 1 - tan θ = tan² θ + 1 tan θ - 1 tan θ(1 - tan θ) = tan² θ + 1 tan θ - 1 tan θ(tan θ - 1) = tan3 θ - 1 tan θ (tan θ - 1) = (tan θ - 1)(tan ²θ + tan θ + 1) tan θ (tan θ - 1) = tan ²θ + tan θ + 1 tan θ 
 = tan θ + cot θ + 1
-  If tan θ + cot θ = 2, then the value of tan100θ + cot100θ is
- 
                        View Hint View Answer Discuss in Forum tan θ + cot θ = 2 ⇒ tan θ + 1 = 2 tan θ 
 ⇒ tan²θ + 1 = 2 tanθ
 ⇒ tan²θ – 2tan θ + 1 = 0
 ⇒ (tanθ – 1)² = 0
 ⇒ tan θ = 1∴ cot θ = 1 = 1 tan θ 
 ∴ tan100 θ + cot100 θ = 1 + 1 = 2
 Correct Option: Atan θ + cot θ = 2 ⇒ tan θ + 1 = 2 tan θ 
 ⇒ tan²θ + 1 = 2 tanθ
 ⇒ tan²θ – 2tan θ + 1 = 0
 ⇒ (tanθ – 1)² = 0
 ⇒ tan θ = 1∴ cot θ = 1 = 1 tan θ 
 ∴ tan100 θ + cot100 θ = 1 + 1 = 2
 
-  If tan θ = 2, then the value of 8sinθ + 5cosθ is : sin3θ + 2cos3θ + 3 cosθ 
- 
                        View Hint View Answer Discuss in Forum Expression = 8 sin θ + 5 cos θ sin3θ + 2cos3θ + 3cos θ 
 Dividing numerator and denominator by cos θ,= 8 tan θ + 5 tan θ . sin²θ + 2cos²θ + 3 = 8 tan θ + 5 2sin² θ + 2cos²θ + 3 = 8 tan θ + 5 2(sin² θ + 2cos²θ) + 3 = 8 × 2 + 5 = 21 5 5 
 Correct Option: AExpression = 8 sin θ + 5 cos θ sin3θ + 2cos3θ + 3cos θ 
 Dividing numerator and denominator by cos θ,= 8 tan θ + 5 tan θ . sin²θ + 2cos²θ + 3 = 8 tan θ + 5 2sin² θ + 2cos²θ + 3 = 8 tan θ + 5 2(sin² θ + 2cos²θ) + 3 = 8 × 2 + 5 = 21 5 5 
 
-  If 2sinθ - cosθ = 1, then value of cot θ is : cosecθ + sinθ 
- 
                        View Hint View Answer Discuss in Forum 2sin θ - cos θ = 1 cos θ - sin θ 
 Dividing numerator and denominator by sin θ,2 - cot θ = 1 cot θ + 1 
 ⇒ 2 – cot θ = cot θ + 1
 ⇒ 2 cot θ = 1⇒ cot θ = 1 2 
 Correct Option: A2sin θ - cos θ = 1 cos θ - sin θ 
 Dividing numerator and denominator by sin θ,2 - cot θ = 1 cot θ + 1 
 ⇒ 2 – cot θ = cot θ + 1
 ⇒ 2 cot θ = 1⇒ cot θ = 1 2 
 
 
	