Trigonometry
-  If x sin 45° = y cosec 30°, then x4 is equal to y4 
- 
                        View Hint View Answer Discuss in Forum x sin 45° = y cosec 30° ⇒ x × 1 = y × 2 √2 ⇒ x = 2√2 y ⇒ x4 = (2√2)4= 24 × 22 y4 
 = 26 = 43
 Correct Option: Ax sin 45° = y cosec 30° ⇒ x × 1 = y × 2 √2 ⇒ x = 2√2 y ⇒ x4 = (2√2)4= 24 × 22 y4 
 = 26 = 43
 
-  If cosec θ – cotθ = 7 , the value of cosecθ is : 2 
- 
                        View Hint View Answer Discuss in Forum cosecθ – cotθ = 7 .......(i) 2 
 cosec²θ – cot²θ = 1
 ⇒ (cosecθ + cotθ) (cosecθ – cotθ) = 1
 ⇒ cosecθ + cotθ= 1 = 2 ........(iii) cosecθ - cotθ 7 
 On adding both equations,2 cosecθ = 7 + 2 2 7 = 49 + 4 + 53 14 14 ⇒ cosecθ = 53 28 
 Correct Option: Ccosecθ – cotθ = 7 .......(i) 2 
 cosec²θ – cot²θ = 1
 ⇒ (cosecθ + cotθ) (cosecθ – cotθ) = 1
 ⇒ cosecθ + cotθ= 1 = 2 ........(iii) cosecθ - cotθ 7 
 On adding both equations,2 cosecθ = 7 + 2 2 7 = 49 + 4 + 53 14 14 ⇒ cosecθ = 53 28 
 
-  If tan θ = 3 and θ is acute, then cosec θ 4 
- 
                        View Hint View Answer Discuss in Forum tan θ = 3 4 ∴ cot θ = 4 3 
 ∵ cosec² θ – cot² θ = 1
 ⇒ cosec θ = √1 + cot² θ = 5 3 
 Correct Option: Btan θ = 3 4 ∴ cot θ = 4 3 
 ∵ cosec² θ – cot² θ = 1
 ⇒ cosec θ = √1 + cot² θ = 5 3 
 
-  If tan α = n tan β and sin α = m sin β, then cos² α is
- 
                        View Hint View Answer Discuss in Forum tan α = n tan β ⇒ tan β 1 tan α n ⇒ cot β n and tan α sin α = m sin β = 1 sin α m ⇒ cosec β = m sin α 
 [∵ cosec²β - cot² β = 1]⇒ m² - n² = 1 sin²α sin²α ⇒ m² - n²cos²α = 1 sin²α tan²α ⇒ m² - n²cos²α = 1 sin²α 
 ⇒ m² - n² cos²α = sin²α
 = 1 - cos²α
 ⇒ m² - 1n² cos²α - cos²α⇒cos²α = m² - 1 n² - 1 
 Correct Option: Ctan α = n tan β ⇒ tan β 1 tan α n ⇒ cot β n and tan α sin α = m sin β = 1 sin α m ⇒ cosec β = m sin α 
 [∵ cosec²β - cot² β = 1]⇒ m² - n² = 1 sin²α sin²α ⇒ m² - n²cos²α = 1 sin²α tan²α ⇒ m² - n²cos²α = 1 sin²α 
 ⇒ m² - n² cos²α = sin²α
 = 1 - cos²α
 ⇒ m² - 1n² cos²α - cos²α⇒cos²α = m² - 1 n² - 1 
 
-  sin²θ– 3 sin θ + 2 = 0 will be true if
- 
                        View Hint View Answer Discuss in Forum sin² θ – 3 sin θ + 2 = 0 
 ⇒ sin² θ – 2 sin θ – sin θ + 2 = 0
 ⇒ sin θ (sin θ – 2) –1 (sin θ – 2) = 0
 ⇒ (sin θ – 1) (sin θ – 2) = 0
 ⇒ sin θ = 1 = sin 90°
 ⇒ θ = 90° and sin θ ≠ 2Correct Option: Dsin² θ – 3 sin θ + 2 = 0 
 ⇒ sin² θ – 2 sin θ – sin θ + 2 = 0
 ⇒ sin θ (sin θ – 2) –1 (sin θ – 2) = 0
 ⇒ (sin θ – 1) (sin θ – 2) = 0
 ⇒ sin θ = 1 = sin 90°
 ⇒ θ = 90° and sin θ ≠ 2
 
	