Trigonometry


  1. If x cosθ – sinθ = 1, then x² + (1 +x² ) sinq equals









  1. View Hint View Answer Discuss in Forum

    x cosθ – sinθ = 1
    ⇒ x cosθ = 1 + sinθ

    ⇒ x =
    1
    +
    sin θ
    cos θcos θ

    ⇒ x = secθ + tanθ --- (i)
    ∵ sec²θ – tan²θ = 1
    ⇒ (secθ + tanθ) (secθ – tanθ) =1
    ⇒ secθ – tanθ =
    1
    (ii)
    x

    From equation (i) + (ii),
    2secθ = x +
    1
    =
    x² + 1
    xx

    ⇒ secθ =
    x² + 1
    2x

    From equation (i) – (ii),
    2tanθ = x –
    1
    =
    x² - 1
    xx

    ∴ tanθ =
    x² - 1
    2x

    ∴ sinθ =
    tanθ
    secθ

    =
    x² - 1
    ×
    2x
    =
    x² - 1

    2xx² + 1x² + 1

    ∴ Expression = x² – (1 + x² ) sinθ
    = x² - (1 + x²) ×
    x² - 1
    = x² - x² + 1 = 1
    x² + 1

    Note : In the original equation x² + (1 + x² ) sinθ has been given that seems incorrect

    Correct Option: B

    x cosθ – sinθ = 1
    ⇒ x cosθ = 1 + sinθ

    ⇒ x =
    1
    +
    sin θ
    cos θcos θ

    ⇒ x = secθ + tanθ --- (i)
    ∵ sec²θ – tan²θ = 1
    ⇒ (secθ + tanθ) (secθ – tanθ) =1
    ⇒ secθ – tanθ =
    1
    (ii)
    x

    From equation (i) + (ii),
    2secθ = x +
    1
    =
    x² + 1
    xx

    ⇒ secθ =
    x² + 1
    2x

    From equation (i) – (ii),
    2tanθ = x –
    1
    =
    x² - 1
    xx

    ∴ tanθ =
    x² - 1
    2x

    ∴ sinθ =
    tanθ
    secθ

    =
    x² - 1
    ×
    2x
    =
    x² - 1

    2xx² + 1x² + 1

    ∴ Expression = x² – (1 + x² ) sinθ
    = x² - (1 + x²) ×
    x² - 1
    = x² - x² + 1 = 1
    x² + 1

    Note : In the original equation x² + (1 + x² ) sinθ has been given that seems incorrect


  1. If sin θ + cos θ = √2 cos θ, then the value of cot θ is









  1. View Hint View Answer Discuss in Forum

    sinθ + cosθ =√2 cos θ
    ⇒ √2 cos θ - cos θ= sinθ
    ⇒ cosθ (√2 - 1) = sinθ

    cosθ
    =
    1
    sinθ2 - 1

    =
    2 + 1
    = √2 + 1
    (√2 - 1)(√2 + 1)

    cotθ = √2 + 1

    Correct Option: A

    sinθ + cosθ =√2 cos θ
    ⇒ √2 cos θ - cos θ= sinθ
    ⇒ cosθ (√2 - 1) = sinθ

    cosθ
    =
    1
    sinθ2 - 1

    =
    2 + 1
    = √2 + 1
    (√2 - 1)(√2 + 1)

    cotθ = √2 + 1



  1. If cos4θ – sin4θ = (2 / 3) , then the value of 1 – 2 sin2 θ is









  1. View Hint View Answer Discuss in Forum

    cos4θ – sin4θ =
    2
    3

    ⇒ (cos²θ + sin²θ) (cos²θ– sin²θ) =
    2
    3

    [ ∵ cos²θ + sin²θ = 1]
    ⇒ cos²θ + sin²θ =
    2
    3

    ⇒ 1 - sin²θ - sin²θ =
    2
    3

    ⇒ 1 - 2 sin²θ =
    2
    3

    Correct Option: A

    cos4θ – sin4θ =
    2
    3

    ⇒ (cos²θ + sin²θ) (cos²θ– sin²θ) =
    2
    3

    [ ∵ cos²θ + sin²θ = 1]
    ⇒ cos²θ + sin²θ =
    2
    3

    ⇒ 1 - sin²θ - sin²θ =
    2
    3

    ⇒ 1 - 2 sin²θ =
    2
    3


  1. The value of
    cot 30° - cot 75°
    is equal to
    tan 15° - tan 60°









  1. View Hint View Answer Discuss in Forum

    cot 30° - cot 75°
    tan 15° - tan 60°

    =
    cot (90° - 60°) - cot (90° - 15°)
    tan 15° - tan 60°

    =
    cot 60° - tan 15°
    = - 1
    tan 15° - tan 60°

    Correct Option: A

    cot 30° - cot 75°
    tan 15° - tan 60°

    =
    cot (90° - 60°) - cot (90° - 15°)
    tan 15° - tan 60°

    =
    cot 60° - tan 15°
    = - 1
    tan 15° - tan 60°



  1. If sin θ + cos θ = p and sec θ + cosec θ = θ, then the value of θ (p² – 1) is









  1. View Hint View Answer Discuss in Forum

    sin θ + cos θ = p
    sec θ + cosec θ = q

    1
    +
    1
    = q
    cos θsinθ

    sinθ + cosθ
    = q
    sinθ . cosθ

    ∴ q(p² - 1) = sin θ + cos θ((sinθ + cosθ)² - 1)
    sinθ . cosθ

    =
    sinθ + cosθ
    . (sin²θ + cos²θ + 2sinθ.cosθ - 1)
    sinθ . cosθ

    =
    sinθ + cosθ
    . 2sinθ . cosθ
    sinθ . cosθ

    = 2p

    Correct Option: C

    sin θ + cos θ = p
    sec θ + cosec θ = q

    1
    +
    1
    = q
    cos θsinθ

    sinθ + cosθ
    = q
    sinθ . cosθ

    ∴ q(p² - 1) = sin θ + cos θ((sinθ + cosθ)² - 1)
    sinθ . cosθ

    =
    sinθ + cosθ
    . (sin²θ + cos²θ + 2sinθ.cosθ - 1)
    sinθ . cosθ

    =
    sinθ + cosθ
    . 2sinθ . cosθ
    sinθ . cosθ

    = 2p