Trigonometry


  1. If r sinθ =
    7
    and r cosθ =
    7√3
    , then the value of r is
    22









  1. View Hint View Answer Discuss in Forum

    ...(i)
    r sinθ =
    7
    2

    ...(ii)
    r cosθ =
    7√3
    2

    On squaring both equations and adding

    r²sin²θ + r² cos²θ =
    47
    +
    147
    44

    ⇒ r² =
    49 + 147
    =
    196
    = 49
    44

    ∴ r = √49 = 7

    Correct Option: D

    ...(i)
    r sinθ =
    7
    2

    ...(ii)
    r cosθ =
    7√3
    2

    On squaring both equations and adding

    r²sin²θ + r² cos²θ =
    47
    +
    147
    44

    ⇒ r² =
    49 + 147
    =
    196
    = 49
    44

    ∴ r = √49 = 7


  1. If θ + φ =
    π
    and sin θ =
    1
    , then the value of sin φ is
    22









  1. View Hint View Answer Discuss in Forum

    sinθ =
    1
    = sin 30° = sin
    π
    26

    ⇒ θ =
    π
    6

    [∵ 180° = π radian]
    ∴ θ + φ =
    π

    π
    + φ =
    π

    262

    ⇒ φ =
    π
    -
    π
    =
    3π - π

    266

    =
    =
    π
    63

    ∴ sin φ = sin
    π
    =
    3
    32

    Correct Option: D

    sinθ =
    1
    = sin 30° = sin
    π
    26

    ⇒ θ =
    π
    6

    [∵ 180° = π radian]
    ∴ θ + φ =
    π

    π
    + φ =
    π

    262

    ⇒ φ =
    π
    -
    π
    =
    3π - π

    266

    =
    =
    π
    63

    ∴ sin φ = sin
    π
    =
    3
    32



  1. If tan x = sin 45°. cos 45° + sin 30° then the value of x is









  1. View Hint View Answer Discuss in Forum

    tanx = sin45°.cos45° + sin 30°

    =
    1
    .
    1
    +
    1
    =
    1
    +
    1
    = 1
    22222

    ∴ tanx = tan 45° ⇒ x = 45°

    Correct Option: B

    tanx = sin45°.cos45° + sin 30°

    =
    1
    .
    1
    +
    1
    =
    1
    +
    1
    = 1
    22222

    ∴ tanx = tan 45° ⇒ x = 45°


  1. If 3 sin θ + 5 cos θ = 5, then the value of 5 sin θ – 3 cos q will be









  1. View Hint View Answer Discuss in Forum

    3 sin θ + 5 cos θ = 5 --- (i)
    5 sin θ – 3 cos θ = x (let)-- (ii)
    On squaring and adding both the equations,
    (3sin θ + 5 cos θ) 2 + (5 sin θ – 3 cos θ )² = 5² + x²
    ⇒ 9 sin²θ + 2² cos²θ + 30 sin θ .cos θ+ 25 sin² θ + 9 cos² θ – 30 sin θ . cos θ = 25 + x²
    ⇒ 9 sin²θ + 9 cos²θ + 25 cos2 θ + 25 sin²θ = 25 + x²
    ⇒ 9 (sin²θ + cos²θ) + 25 (cos²θ + sin²θ ) = 25 + x²
    ⇒ 9 + 25 = 25 + x²
    ⇒ x² = 9
    ⇒ x = ± 3

    Correct Option: A

    3 sin θ + 5 cos θ = 5 --- (i)
    5 sin θ – 3 cos θ = x (let)-- (ii)
    On squaring and adding both the equations,
    (3sin θ + 5 cos θ) 2 + (5 sin θ – 3 cos θ )² = 5² + x²
    ⇒ 9 sin²θ + 2² cos²θ + 30 sin θ .cos θ+ 25 sin² θ + 9 cos² θ – 30 sin θ . cos θ = 25 + x²
    ⇒ 9 sin²θ + 9 cos²θ + 25 cos2 θ + 25 sin²θ = 25 + x²
    ⇒ 9 (sin²θ + cos²θ) + 25 (cos²θ + sin²θ ) = 25 + x²
    ⇒ 9 + 25 = 25 + x²
    ⇒ x² = 9
    ⇒ x = ± 3



  1. If θ is an acute angle and tan θ + cot θ = 2, then the value of tan5 θ + cot5 θ is









  1. View Hint View Answer Discuss in Forum

    tan θ + cot θ = 2

    ⇒ tan θ +
    1
    = 2
    tan θ

    tan² θ + 1
    = 2
    tan θ

    ⇒ tan² θ +1 = 2 tanθ
    ⇒ tan²θ – 2 tan θ + 1 = 0
    ⇒ (tan θ –1)² = 0
    ⇒ tanθ – 1= 0 ⇒ tanθ = 1
    ∴ cot θ =
    1
    = 1
    tan θ

    ∴ tan5θ + cot5θ = 1 + 1 = 2

    Correct Option: B

    tan θ + cot θ = 2

    ⇒ tan θ +
    1
    = 2
    tan θ

    tan² θ + 1
    = 2
    tan θ

    ⇒ tan² θ +1 = 2 tanθ
    ⇒ tan²θ – 2 tan θ + 1 = 0
    ⇒ (tan θ –1)² = 0
    ⇒ tanθ – 1= 0 ⇒ tanθ = 1
    ∴ cot θ =
    1
    = 1
    tan θ

    ∴ tan5θ + cot5θ = 1 + 1 = 2