Trigonometry
-  If r sinθ = 7 and r cosθ = 7√3 , then the value of r is 2 2 
- 
                        View Hint View Answer Discuss in Forum r sinθ = 7 ...(i) 2 r cosθ = 7√3 ...(ii) 2 
 On squaring both equations and adding r²sin²θ + r² cos²θ = 47 + 147 4 4 ⇒ r² = 49 + 147 = 196 = 49 4 4 
 ∴ r = √49 = 7
 Correct Option: Dr sinθ = 7 ...(i) 2 r cosθ = 7√3 ...(ii) 2 
 On squaring both equations and adding r²sin²θ + r² cos²θ = 47 + 147 4 4 ⇒ r² = 49 + 147 = 196 = 49 4 4 
 ∴ r = √49 = 7
 
-  If θ + φ = π and sin θ = 1 , then the value of sin φ is 2 2 
- 
                        View Hint View Answer Discuss in Forum sinθ = 1 = sin 30° = sin π 2 6 ⇒ θ = π 6 
 [∵ 180° = π radian]∴ θ + φ = π ⇒ π + φ = π 2 6 2 ⇒ φ = π - π = 3π - π 2 6 6 = 2π = π 6 3 ∴ sin φ = sin π = √3 3 2 
 Correct Option: Dsinθ = 1 = sin 30° = sin π 2 6 ⇒ θ = π 6 
 [∵ 180° = π radian]∴ θ + φ = π ⇒ π + φ = π 2 6 2 ⇒ φ = π - π = 3π - π 2 6 6 = 2π = π 6 3 ∴ sin φ = sin π = √3 3 2 
 
-  If tan x = sin 45°. cos 45° + sin 30° then the value of x is
- 
                        View Hint View Answer Discuss in Forum tanx = sin45°.cos45° + sin 30° = 1 . 1 + 1 = 1 + 1 = 1 √2 √2 2 2 2 
 ∴ tanx = tan 45° ⇒ x = 45°
 Correct Option: Btanx = sin45°.cos45° + sin 30° = 1 . 1 + 1 = 1 + 1 = 1 √2 √2 2 2 2 
 ∴ tanx = tan 45° ⇒ x = 45°
 
-  If 3 sin θ + 5 cos θ = 5, then the value of 5 sin θ – 3 cos q will be
- 
                        View Hint View Answer Discuss in Forum 3 sin θ + 5 cos θ = 5 --- (i) 
 5 sin θ – 3 cos θ = x (let)-- (ii)
 On squaring and adding both the equations,
 (3sin θ + 5 cos θ) 2 + (5 sin θ – 3 cos θ )² = 5² + x²
 ⇒ 9 sin²θ + 2² cos²θ + 30 sin θ .cos θ+ 25 sin² θ + 9 cos² θ – 30 sin θ . cos θ = 25 + x²
 ⇒ 9 sin²θ + 9 cos²θ + 25 cos2 θ + 25 sin²θ = 25 + x²
 ⇒ 9 (sin²θ + cos²θ) + 25 (cos²θ + sin²θ ) = 25 + x²
 ⇒ 9 + 25 = 25 + x²
 ⇒ x² = 9
 ⇒ x = ± 3Correct Option: A3 sin θ + 5 cos θ = 5 --- (i) 
 5 sin θ – 3 cos θ = x (let)-- (ii)
 On squaring and adding both the equations,
 (3sin θ + 5 cos θ) 2 + (5 sin θ – 3 cos θ )² = 5² + x²
 ⇒ 9 sin²θ + 2² cos²θ + 30 sin θ .cos θ+ 25 sin² θ + 9 cos² θ – 30 sin θ . cos θ = 25 + x²
 ⇒ 9 sin²θ + 9 cos²θ + 25 cos2 θ + 25 sin²θ = 25 + x²
 ⇒ 9 (sin²θ + cos²θ) + 25 (cos²θ + sin²θ ) = 25 + x²
 ⇒ 9 + 25 = 25 + x²
 ⇒ x² = 9
 ⇒ x = ± 3
-  If θ is an acute angle and tan θ + cot θ = 2, then the value of tan5 θ + cot5 θ is
- 
                        View Hint View Answer Discuss in Forum tan θ + cot θ = 2 ⇒ tan θ + 1 = 2 tan θ ⇒ tan² θ + 1 = 2 tan θ 
 ⇒ tan² θ +1 = 2 tanθ
 ⇒ tan²θ – 2 tan θ + 1 = 0
 ⇒ (tan θ –1)² = 0
 ⇒ tanθ – 1= 0 ⇒ tanθ = 1∴ cot θ = 1 = 1 tan θ 
 ∴ tan5θ + cot5θ = 1 + 1 = 2Correct Option: Btan θ + cot θ = 2 ⇒ tan θ + 1 = 2 tan θ ⇒ tan² θ + 1 = 2 tan θ 
 ⇒ tan² θ +1 = 2 tanθ
 ⇒ tan²θ – 2 tan θ + 1 = 0
 ⇒ (tan θ –1)² = 0
 ⇒ tanθ – 1= 0 ⇒ tanθ = 1∴ cot θ = 1 = 1 tan θ 
 ∴ tan5θ + cot5θ = 1 + 1 = 2
 
	