Trigonometry


  1. If sinθ – cosθ = (1 / 2) then value of sinθ + cosθ is :









  1. View Hint View Answer Discuss in Forum

    sinθ – cosθ =
    1
    2

    sinθ + cosθ = x
    On squaring and adding,
    2(sin²θ + cos²θ) =
    1
    + x²
    4

    ⇒ x² = 2 -
    1
    =
    7
    44

    ⇒ x =
    7
    2

    Correct Option: C

    sinθ – cosθ =
    1
    2

    sinθ + cosθ = x
    On squaring and adding,
    2(sin²θ + cos²θ) =
    1
    + x²
    4

    ⇒ x² = 2 -
    1
    =
    7
    44

    ⇒ x =
    7
    2


  1. The value of
    1
    -
    1
    is
    (1 + tan² θ)(1 + cot² θ)









  1. View Hint View Answer Discuss in Forum

    Expression

    =
    1
    +
    1
    1 + tan²θ1 + cot²θ

    =
    1
    +
    1
    sec²θcosec²θ

    = cos²θ + sin²θ = 1

    Correct Option: B

    Expression

    =
    1
    +
    1
    1 + tan²θ1 + cot²θ

    =
    1
    +
    1
    sec²θcosec²θ

    = cos²θ + sin²θ = 1



  1. If cos4 θ – sin4 θ = (2 / 3) , then the value of 1 – 2 sin2θ is









  1. View Hint View Answer Discuss in Forum

    cos4θ - sin4θ =
    2
    3

    ⇒ (cos²θ + sin²θ) (cos²θ - sin²θ =
    2
    3

    ⇒ 1 - sin²θ - sin²θ =
    2
    3

    ⇒ 1 - 2sin²θ =
    2
    3

    Correct Option: C

    cos4θ - sin4θ =
    2
    3

    ⇒ (cos²θ + sin²θ) (cos²θ - sin²θ =
    2
    3

    ⇒ 1 - sin²θ - sin²θ =
    2
    3

    ⇒ 1 - 2sin²θ =
    2
    3


  1. If cos θ + sin θ = √2 cos θ, then cos θ – sin θ is









  1. View Hint View Answer Discuss in Forum

    cosθ + sinθ = √2cosθ
    On squaring both sides,
    cos²θ + sin²θ + 2cosθ.sinθ= 2cos²θ
    ⇒ cos²θ – sin²θ = 2 sinθ . cosθ
    ⇒ (cosθ + sinθ) (cosθ – sinθ) = 2sinθ. cosθ
    ⇒ √2cosθ (cosθ – sinθ) = 2sinθ . cosθ
    ⇒ cosθ – sinθ

    =
    2 sinθ . cosθ
    = √2sinθ
    2cosθ

    Correct Option: D

    cosθ + sinθ = √2cosθ
    On squaring both sides,
    cos²θ + sin²θ + 2cosθ.sinθ= 2cos²θ
    ⇒ cos²θ – sin²θ = 2 sinθ . cosθ
    ⇒ (cosθ + sinθ) (cosθ – sinθ) = 2sinθ. cosθ
    ⇒ √2cosθ (cosθ – sinθ) = 2sinθ . cosθ
    ⇒ cosθ – sinθ

    =
    2 sinθ . cosθ
    = √2sinθ
    2cosθ



  1. The value of
    1
    -
    1
    is
    cosecθ - cotθsinθ









  1. View Hint View Answer Discuss in Forum

    Expression

    =
    1
    -
    1
    cosecθ - cotθsinθ

    =
    cosec²θ - cot²θ
    - cosecθ = cosec θ + cotθ – cosecθ = cotθ
    cosecθ - cotθ

    [cosec²θ – cot²θ = 1 & 1/sinθ = cosecθ]
    Method-2 :
    1
    =
    1
    1
    -
    cosθ
    sinθ
    sinθsinθ

    =
    sinθ
    -
    1
    -
    sin²θ - 1 + cosθ
    =
    1 - cos²θ - 1 + cosθ
    1 - cosθsinθsinθ(1 - cosθ)sinθ(1 - cosθ)

    =
    cosθ(-cosθ + 1)
    =
    cosθ
    = cotθ
    sinθ(1 - cosθ)sinθ

    Correct Option: B

    Expression

    =
    1
    -
    1
    cosecθ - cotθsinθ

    =
    cosec²θ - cot²θ
    - cosecθ = cosec θ + cotθ – cosecθ = cotθ
    cosecθ - cotθ

    [cosec²θ – cot²θ = 1 & 1/sinθ = cosecθ]
    Method-2 :
    1
    =
    1
    1
    -
    cosθ
    sinθ
    sinθsinθ

    =
    sinθ
    -
    1
    -
    sin²θ - 1 + cosθ
    =
    1 - cos²θ - 1 + cosθ
    1 - cosθsinθsinθ(1 - cosθ)sinθ(1 - cosθ)

    =
    cosθ(-cosθ + 1)
    =
    cosθ
    = cotθ
    sinθ(1 - cosθ)sinθ