Trigonometry
-  If sinθ – cosθ = (1 / 2) then value of sinθ + cosθ is :
- 
                        View Hint View Answer Discuss in Forum sinθ – cosθ = 1 2 
 sinθ + cosθ = x
 On squaring and adding,2(sin²θ + cos²θ) = 1 + x² 4 ⇒ x² = 2 - 1 = 7 4 4 ⇒ x = √7 2 
 Correct Option: Csinθ – cosθ = 1 2 
 sinθ + cosθ = x
 On squaring and adding,2(sin²θ + cos²θ) = 1 + x² 4 ⇒ x² = 2 - 1 = 7 4 4 ⇒ x = √7 2 
 
-  The value of 1 - 1 is (1 + tan² θ) (1 + cot² θ) 
- 
                        View Hint View Answer Discuss in Forum Expression = 1 + 1 1 + tan²θ 1 + cot²θ = 1 + 1 sec²θ cosec²θ 
 = cos²θ + sin²θ = 1
 Correct Option: BExpression = 1 + 1 1 + tan²θ 1 + cot²θ = 1 + 1 sec²θ cosec²θ 
 = cos²θ + sin²θ = 1
 
-  If cos4 θ – sin4 θ = (2 / 3) , then the value of 1 – 2 sin2θ is
- 
                        View Hint View Answer Discuss in Forum cos4θ - sin4θ = 2 3 ⇒ (cos²θ + sin²θ) (cos²θ - sin²θ = 2 3 ⇒ 1 - sin²θ - sin²θ = 2 3 ⇒ 1 - 2sin²θ = 2 3 
 Correct Option: Ccos4θ - sin4θ = 2 3 ⇒ (cos²θ + sin²θ) (cos²θ - sin²θ = 2 3 ⇒ 1 - sin²θ - sin²θ = 2 3 ⇒ 1 - 2sin²θ = 2 3 
 
-  If cos θ + sin θ = √2 cos θ, then cos θ – sin θ is
- 
                        View Hint View Answer Discuss in Forum cosθ + sinθ = √2cosθ 
 On squaring both sides,
 cos²θ + sin²θ + 2cosθ.sinθ= 2cos²θ
 ⇒ cos²θ – sin²θ = 2 sinθ . cosθ
 ⇒ (cosθ + sinθ) (cosθ – sinθ) = 2sinθ. cosθ
 ⇒ √2cosθ (cosθ – sinθ) = 2sinθ . cosθ
 ⇒ cosθ – sinθ= 2 sinθ . cosθ = √2sinθ √2cosθ 
 Correct Option: Dcosθ + sinθ = √2cosθ 
 On squaring both sides,
 cos²θ + sin²θ + 2cosθ.sinθ= 2cos²θ
 ⇒ cos²θ – sin²θ = 2 sinθ . cosθ
 ⇒ (cosθ + sinθ) (cosθ – sinθ) = 2sinθ. cosθ
 ⇒ √2cosθ (cosθ – sinθ) = 2sinθ . cosθ
 ⇒ cosθ – sinθ= 2 sinθ . cosθ = √2sinθ √2cosθ 
 
-  The value of 1 - 1 is cosecθ - cotθ sinθ 
- 
                        View Hint View Answer Discuss in Forum Expression = 1 - 1 cosecθ - cotθ sinθ = cosec²θ - cot²θ - cosecθ = cosec θ + cotθ – cosecθ = cotθ cosecθ - cotθ 
 [cosec²θ – cot²θ = 1 & 1/sinθ = cosecθ]
 Method-2 :1 = 1 1 - cosθ sinθ sinθ sinθ = sinθ - 1 - sin²θ - 1 + cosθ = 1 - cos²θ - 1 + cosθ 1 - cosθ sinθ sinθ(1 - cosθ) sinθ(1 - cosθ) = cosθ(-cosθ + 1) = cosθ = cotθ sinθ(1 - cosθ) sinθ 
 Correct Option: BExpression = 1 - 1 cosecθ - cotθ sinθ = cosec²θ - cot²θ - cosecθ = cosec θ + cotθ – cosecθ = cotθ cosecθ - cotθ 
 [cosec²θ – cot²θ = 1 & 1/sinθ = cosecθ]
 Method-2 :1 = 1 1 - cosθ sinθ sinθ sinθ = sinθ - 1 - sin²θ - 1 + cosθ = 1 - cos²θ - 1 + cosθ 1 - cosθ sinθ sinθ(1 - cosθ) sinθ(1 - cosθ) = cosθ(-cosθ + 1) = cosθ = cotθ sinθ(1 - cosθ) sinθ 
 
 
	