Trigonometry
-  If 0° < θ < 90° and 2 secθ = 3 cosec²θ , then θ is
- 
                        View Hint View Answer Discuss in Forum 2 secθ = 3cosec²θ ⇒ 2 = 3 = 3 cos θ sin² θ 1 - cos² θ 
 ⇒ 2 – 2cos² θ = 3cos θ
 ⇒ 2cos² θ + 3cos θ – 2 = 0
 ⇒ 2cos² θ + 4cos θ – cos θ – 2 = 0
 ⇒ 2cosθ (cosθ + 2) –1 (cosθ + 2)
 = 0
 ⇒ (2cosθ – 1) (cosθ + 2) = 0
 ∴ 2cosθ – 1 = 0 as cosθ + 2 ≠ 0⇒ cos θ - 1 = cos 60° or cos π 2 3 ⇒ θ = π 3 
 Correct Option: C2 secθ = 3cosec²θ ⇒ 2 = 3 = 3 cos θ sin² θ 1 - cos² θ 
 ⇒ 2 – 2cos² θ = 3cos θ
 ⇒ 2cos² θ + 3cos θ – 2 = 0
 ⇒ 2cos² θ + 4cos θ – cos θ – 2 = 0
 ⇒ 2cosθ (cosθ + 2) –1 (cosθ + 2)
 = 0
 ⇒ (2cosθ – 1) (cosθ + 2) = 0
 ∴ 2cosθ – 1 = 0 as cosθ + 2 ≠ 0⇒ cos θ - 1 = cos 60° or cos π 2 3 ⇒ θ = π 3 
 
- 
                        View Hint View Answer Discuss in Forum Expression  = 1 + sin θ + 1 - sin θ cos θ cos θ = 1 + sin θ + 1 - sin θ + 2 cos θ cos θ 
 = 2 secθCorrect Option: DExpression  = 1 + sin θ + 1 - sin θ cos θ cos θ = 1 + sin θ + 1 - sin θ + 2 cos θ cos θ 
 = 2 secθ
-  A person from the top of a hill observes a vehicle moving towards him at a uniform speed. It takes 10 minutes for the angle of depression to change from 45° to 60°. After this the time required by the vehicle to reach the bottom of the hill is
- 
                        View Hint View Answer Discuss in Forum  
 AB = height of hill = h metre
 Let speed of vehicle be v metre/minute.
 Time taken to reach B from D = t minutes
 CD = 10v metre
 BD = vt metre
 In ∆ ABC,tan 45° = AB BC ⇒ 1 = h metre BC 
 ⇒ BC = h
 = (10v + vt) metre ....(i)
 In ∆ABD,tan 60° = AB BD ⇒ √3 
 =h vt 
 ⇒ h = √3 vt
 ⇒ 10v + vt = √3 vt
 ⇒ 10 = √3 t – t
 ⇒ 10 = t (√3 - 1)⇒ t 
 =10 √3- 1 = 10(√3 + 1) = 10(√3 + 1) (√3 - 1)(√3 + 1) 2 
 = 5 (1.732 + 1) = 5 × 2.732
 = 13.66 minutes
 = 13 minutes 40 secondsCorrect Option: C 
 AB = height of hill = h metre
 Let speed of vehicle be v metre/minute.
 Time taken to reach B from D = t minutes
 CD = 10v metre
 BD = vt metre
 In ∆ ABC,tan 45° = AB BC ⇒ 1 = h metre BC 
 ⇒ BC = h
 = (10v + vt) metre ....(i)
 In ∆ABD,tan 60° = AB BD ⇒ √3 
 =h vt 
 ⇒ h = √3 vt
 ⇒ 10v + vt = √3 vt
 ⇒ 10 = √3 t – t
 ⇒ 10 = t (√3 - 1)⇒ t 
 =10 √3- 1 = 10(√3 + 1) = 10(√3 + 1) (√3 - 1)(√3 + 1) 2 
 = 5 (1.732 + 1) = 5 × 2.732
 = 13.66 minutes
 = 13 minutes 40 seconds
-  The value of 
- 
                        View Hint View Answer Discuss in Forum (2 cos²θ – 1)  1 + tanθ + 1 - tanθ  1 - tanθ 1 + tanθ 
 = (2 cos²θ – 1) (1 + tanθ)² + (1 - tanθ)²  1 - tan²θ 
 = (2 cos²θ – 1) = 2sec² θ.cos² θ(2cos² θ - 1) 2cos² θ - 1 
 = 2Correct Option: D(2 cos²θ – 1)  1 + tanθ + 1 - tanθ  1 - tanθ 1 + tanθ 
 = (2 cos²θ – 1) (1 + tanθ)² + (1 - tanθ)²  1 - tan²θ 
 = (2 cos²θ – 1) = 2sec² θ.cos² θ(2cos² θ - 1) 2cos² θ - 1 
 = 2
-  If tan 7θ tan 2θ = 1, then the value of tan 3θ is
- 
                        View Hint View Answer Discuss in Forum tan 7θ . tan 2θ = 1 ⇒ tan 7θ = 1 = cot 2θ tan 2θ 
 ⇒ tan 7θ = tan (90° – 2θ)
 ⇒ 7θ = 90° – 2θ
 ⇒ 9θ = 90° ⇒ θ = 10°∴ tan 3θ = tan 30° = 1 √3 
 Correct Option: Ctan 7θ . tan 2θ = 1 ⇒ tan 7θ = 1 = cot 2θ tan 2θ 
 ⇒ tan 7θ = tan (90° – 2θ)
 ⇒ 7θ = 90° – 2θ
 ⇒ 9θ = 90° ⇒ θ = 10°∴ tan 3θ = tan 30° = 1 √3 
 
 
  
	