Trigonometry


  1. If tan
    π
    -
    α
    = √3 , then the value of cosα is
    22










  1. View Hint View Answer Discuss in Forum

    tan
    π
    -
    α
    = √3
    22

    ⇒ cot
    α
    = √3 = cot30°
    2

    α
    = cot30° ⇒ α = 60°
    2

    ∴ cosα = cos60° =
    1
    2

    Correct Option: B

    tan
    π
    -
    α
    = √3
    22

    ⇒ cot
    α
    = √3 = cot30°
    2

    α
    = cot30° ⇒ α = 60°
    2

    ∴ cosα = cos60° =
    1
    2


  1. If sin (90°– θ) + cosθ = 2 cos(90° – θ), then the value of cosecθ is









  1. View Hint View Answer Discuss in Forum

    sin (90° – θ) + cosθ = √2cos (90° – θ)
    ⇒ cosθ + cosθ = √2sinθ
    ⇒ 2 cosθ = √2sinθ

    cosθ
    =
    2
    =
    1
    sinθ22

    ⇒ cotθ =
    1
    2

    ∴ cosec2θ = 1 + cot2θ
    ⇒ cosec2θ = 1 +
    1
    2
    2

    cosec2θ = 1 +
    1
    =
    3
    22

    ⇒ cosecθ = √
    3
    2

    Correct Option: B

    sin (90° – θ) + cosθ = √2cos (90° – θ)
    ⇒ cosθ + cosθ = √2sinθ
    ⇒ 2 cosθ = √2sinθ

    cosθ
    =
    2
    =
    1
    sinθ22

    ⇒ cotθ =
    1
    2

    ∴ cosec2θ = 1 + cot2θ
    ⇒ cosec2θ = 1 +
    1
    2
    2

    cosec2θ = 1 +
    1
    =
    3
    22

    ⇒ cosecθ = √
    3
    2



  1. If secθ + tanθ = m (>1), then the value of sinθ is
    (0° < θ < 90°)









  1. View Hint View Answer Discuss in Forum

    secθ + tanθ = m (Given) ...(i)
    ∵ sec2θ – tan2θ = 1
    ⇒ (secθ + tanθ) (secθ – tanθ) = 1

    ⇒ secθ – tanθ =
    1
    ....(ii)
    m

    By equations (i) + (ii),
    2secθ = m +
    1
    m

    ⇒ secθ =
    m2 + 1
    2m

    By equation (i) – (ii),
    2tanθ = m -
    1
    m

    ⇒ tanθ =
    m2 - 1
    2m

    ∴ sinθ =
    tanθ
    secθ

    sinθ =
    m2 - 1
    ×
    2m
    =
    m2 - 1
    2mm2 + 1m2 + 1

    Correct Option: B

    secθ + tanθ = m (Given) ...(i)
    ∵ sec2θ – tan2θ = 1
    ⇒ (secθ + tanθ) (secθ – tanθ) = 1

    ⇒ secθ – tanθ =
    1
    ....(ii)
    m

    By equations (i) + (ii),
    2secθ = m +
    1
    m

    ⇒ secθ =
    m2 + 1
    2m

    By equation (i) – (ii),
    2tanθ = m -
    1
    m

    ⇒ tanθ =
    m2 - 1
    2m

    ∴ sinθ =
    tanθ
    secθ

    sinθ =
    m2 - 1
    ×
    2m
    =
    m2 - 1
    2mm2 + 1m2 + 1


  1. From 40m away from the foot of a tower, the angle of elevation of the top of the tower is 600 . What is the height of the tower?









  1. View Hint View Answer Discuss in Forum


    AB = Tower = h metre
    BC = 40 metre

    ∴ tanθ =
    AB
    BC

    ⇒ tan60° =
    h
    40

    ⇒ √3 =
    h
    40

    ⇒ h = 40√3 =
    40√3 × √3
    3

    =
    120
    metre
    3

    Correct Option: A


    AB = Tower = h metre
    BC = 40 metre

    ∴ tanθ =
    AB
    BC

    ⇒ tan60° =
    h
    40

    ⇒ √3 =
    h
    40

    ⇒ h = 40√3 =
    40√3 × √3
    3

    =
    120
    metre
    3



  1. The angle of elevation of an aeroplane from a point on the ground is 45°. After flying for 15 seconds, the elevation changes to 30°. If the aeroplane is flying at a height of 2500 metres, then the speed of the aeroplane in km/ hr. is









  1. View Hint View Answer Discuss in Forum


    Let A and C be the positions of plane.
    AB = CD = 2500 metre
    BD = AC = x metre (let)
    ∠AOB = 60° ; ∠COD = 30°
    In ∆OAB,
    ⇒ OB = 2500 metre
    In ∆OCD,

    tan30° =
    CD
    OD

    1
    3

    =
    2500
    2500 + x

    ⇒ 2500 + x = 2500√3
    ⇒ x
    = 2500 √3 – 2500
    = 2500 (√3 - 1) metre
    Time = 15 seconds
    =
    15
    hour =
    1
    hour
    60 × 60240

    ∴ Speed of plane =
    2500 (√3 - 1)
    × 240 kmph
    1000

    = 600 (√3 - 1) kmph.

    Correct Option: D


    Let A and C be the positions of plane.
    AB = CD = 2500 metre
    BD = AC = x metre (let)
    ∠AOB = 60° ; ∠COD = 30°
    In ∆OAB,
    ⇒ OB = 2500 metre
    In ∆OCD,

    tan30° =
    CD
    OD

    1
    3

    =
    2500
    2500 + x

    ⇒ 2500 + x = 2500√3
    ⇒ x
    = 2500 √3 – 2500
    = 2500 (√3 - 1) metre
    Time = 15 seconds
    =
    15
    hour =
    1
    hour
    60 × 60240

    ∴ Speed of plane =
    2500 (√3 - 1)
    × 240 kmph
    1000

    = 600 (√3 - 1) kmph.