Trigonometry
-  If cosecθ – sinθ = l and secθ – cosθ = m, then the value of l²m² (l² + m² + 3) is
- 
                        View Hint View Answer Discuss in Forum (l².m²)(m² + 3) 
 = (cosec θ - sin θ)²
 (sec θ - cos θ)²
 {(cosec θ - sin θ)² + (sec θ - cos θ)² + 3} = cos4θ × sin4θ sin2θ cos2θ  
 = cos²θ × sin²θ 
 = cos2 θ + sin6θ + 3cos2θ . sin2θ
 = {(cos2θ + sin2θ)
 3 – 3 cos2θ . sin2θ(cos2θ + sin2θ)} + 3cos2θ . sin2θ
 [∵ a3 + b3 = (a + b)3– 3ab (a + b)]
 = 1 – 3 cos2θ . sin2θ + 3 cos2θ .
 sin2θ = 1Correct Option: C(l².m²)(m² + 3) 
 = (cosec θ - sin θ)²
 (sec θ - cos θ)²
 {(cosec θ - sin θ)² + (sec θ - cos θ)² + 3} = cos4θ × sin4θ sin2θ cos2θ  
 = cos²θ × sin²θ 
 = cos2 θ + sin6θ + 3cos2θ . sin2θ
 = {(cos2θ + sin2θ)
 3 – 3 cos2θ . sin2θ(cos2θ + sin2θ)} + 3cos2θ . sin2θ
 [∵ a3 + b3 = (a + b)3– 3ab (a + b)]
 = 1 – 3 cos2θ . sin2θ + 3 cos2θ .
 sin2θ = 1
-  An aeroplane when flying at a height of 3125 m from the ground passes vertically below another plane at an instant when the angle of elevation of the two planes from the same point on the ground are 30° and 60° respectively. The distance between the two planes at that instant is
- 
                        View Hint View Answer Discuss in Forum  
 A and C ⇒ position of planes
 BC = 3125m
 Let AC = x metre
 In ∆ABDtan60° = AB BD ⇒ √3 = 3125 + x BD ⇒ BD = 3125 + x √3 
 In ∆BCD,tan30° = BC BD ⇒ 1 = 3125 √3 3125 + x √3 
 ⇒ 3 (3125) = 3125 + x
 ⇒ 9375 = 3125 + x
 ⇒ x = 9375 – 3125
 x = 6250 metreCorrect Option: D 
 A and C ⇒ position of planes
 BC = 3125m
 Let AC = x metre
 In ∆ABDtan60° = AB BD ⇒ √3 = 3125 + x BD ⇒ BD = 3125 + x √3 
 In ∆BCD,tan30° = BC BD ⇒ 1 = 3125 √3 3125 + x √3 
 ⇒ 3 (3125) = 3125 + x
 ⇒ 9375 = 3125 + x
 ⇒ x = 9375 – 3125
 x = 6250 metre
-  The elevation of the top of a tower from a point on the ground is 45°. On travelling 60 m from the point towards the tower, the elevation of the top becomes 60°. The height of the tower (in metres) is
- 
                        View Hint View Answer Discuss in Forum  
 AB = tower = h metre
 ∠ACB = 45°, ∠ADB = 60°
 CD = 60 metre] BD = x metre
 From ∆ABC,tan 45° = AB BC ⇒ 1 = h x + 60 
 ⇒ h = x + 60 ....................(i)
 From ∆ABDtan 60° = AB BD ⇒ √3 = h x 
 ⇒ h = √3x
 ⇒ h = √3(h - 60)
 ⇒ √3h - h= 60√3
 ⇒ h(√3 - 1) = 60√3⇒ h = 60√3 = 60√3(√3 + 1) √3 - 1 (√3 - 1)(√3 + 1) 
 = 30√3(√3 + 1)
 = 30(3 + √3) metreCorrect Option: C 
 AB = tower = h metre
 ∠ACB = 45°, ∠ADB = 60°
 CD = 60 metre] BD = x metre
 From ∆ABC,tan 45° = AB BC ⇒ 1 = h x + 60 
 ⇒ h = x + 60 ....................(i)
 From ∆ABDtan 60° = AB BD ⇒ √3 = h x 
 ⇒ h = √3x
 ⇒ h = √3(h - 60)
 ⇒ √3h - h= 60√3
 ⇒ h(√3 - 1) = 60√3⇒ h = 60√3 = 60√3(√3 + 1) √3 - 1 (√3 - 1)(√3 + 1) 
 = 30√3(√3 + 1)
 = 30(3 + √3) metre
-  The length of the shadow of a vertical tower on level ground increases by 10 metres when the altitude of the sun changes from 45° to 30°. Then the height of the tower is
- 
                        View Hint View Answer Discuss in Forum  
 AB = Tower = h metre
 ∠BDA = 30°
 ∠ACB = 45°
 CD = 10 metre
 From ∆ABC,tan45° = AB BC ⇒ 1 = h ⇒ h = x x 
 ⇒ √3h = h +10 [∵ h = x ]
 ⇒ √3h - h = 10
 ⇒ h( √3 - 1) = 10⇒ h = 10 = 10 × √3 + 1 √3 - 1 √3 - 1 √3 + 1 = 10(√3 + 1) = 5(√3 + 1) metre 2 Correct Option: C 
 AB = Tower = h metre
 ∠BDA = 30°
 ∠ACB = 45°
 CD = 10 metre
 From ∆ABC,tan45° = AB BC ⇒ 1 = h ⇒ h = x x 
 ⇒ √3h = h +10 [∵ h = x ]
 ⇒ √3h - h = 10
 ⇒ h( √3 - 1) = 10⇒ h = 10 = 10 × √3 + 1 √3 - 1 √3 - 1 √3 + 1 = 10(√3 + 1) = 5(√3 + 1) metre 2 
-  The angle of elevation of a tower from a distance 50 m from its foot is 30°. The height of the tower is
- 
                        View Hint View Answer Discuss in Forum  
 AB = Tower = h metre
 BC = 50 metre
 ∠ ACB = 30°∴ tan 30° = AB BC ⇒ 1 = AB √3 50 ⇒ AB = 50 metre √3 Correct Option: B 
 AB = Tower = h metre
 BC = 50 metre
 ∠ ACB = 30°∴ tan 30° = AB BC ⇒ 1 = AB √3 50 ⇒ AB = 50 metre √3 
 
	