Trigonometry
-  If sinθ + cosecθ = 2, the value of sin100θ + cosec100θ is :
- 
                        View Hint View Answer Discuss in Forum sinθ + cosecθ = 2 ⇒ sinθ + 1 = 2 sinθ 
 ⇒ sin2θ + 1 = 2sinθ
 ⇒ sin2θ - 2sinθ + 1 = 0
 ⇒ (sinθ - 1)2 = 0
 ⇒ sinθ = 1∴ cosecθ = 1 = 1 sinθ 
 ∴ sin100θ + cosec100θ = 1 + 1 = 2Correct Option: Bsinθ + cosecθ = 2 ⇒ sinθ + 1 = 2 sinθ 
 ⇒ sin2θ + 1 = 2sinθ
 ⇒ sin2θ - 2sinθ + 1 = 0
 ⇒ (sinθ - 1)2 = 0
 ⇒ sinθ = 1∴ cosecθ = 1 = 1 sinθ 
 ∴ sin100θ + cosec100θ = 1 + 1 = 2
-  The value of sin 65° is cos 25° 
- 
                        View Hint View Answer Discuss in Forum sin 65° = sin( 90° - 25° ) cos 25° cos 25° ⇒ sin 65° = cos25° = 1 cos 25° cos 25° Correct Option: Bsin 65° = sin( 90° - 25° ) cos 25° cos 25° ⇒ sin 65° = cos25° = 1 cos 25° cos 25° 
-  If sinx + sinx = 4 ; and 0° < x < 90°, then find the value of x 1 + cosx 1 - cosx 
- 
                        View Hint View Answer Discuss in Forum sinx + sinx = 4 1 + cosx 1 - cosx ⇒ sinx(1 - cosx) + sinx(1 + cosx) = 4 (1 + cosx)(1 - cosx) ⇒ sinx - cosx.sinx + sinx + cosx.sinx = 4 (1 - cos2x) ⇒ 2sinx = 4 sin2x 
 ⇒ 2sinx = 1⇒ sinx = 1 = sin30° ⇒ x = 30° 2 Correct Option: Dsinx + sinx = 4 1 + cosx 1 - cosx ⇒ sinx(1 - cosx) + sinx(1 + cosx) = 4 (1 + cosx)(1 - cosx) ⇒ sinx - cosx.sinx + sinx + cosx.sinx = 4 (1 - cos2x) ⇒ 2sinx = 4 sin2x 
 ⇒ 2sinx = 1⇒ sinx = 1 = sin30° ⇒ x = 30° 2 
-  Find the value of tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ).
- 
                        View Hint View Answer Discuss in Forum tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ  1 + 1   1 + 1    1 + 1  cos2θ cos4θ cos8θ tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ  cos2θ + 1   cos4θ + 1    cos8θ + 1  cos2θ cos4θ cos8θ tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ  2cos2θ   2cos22θ    2cos24θ  cos2θ cos4θ cos8θ 
 [ ∴ 1 + cos2θ = 2cos2θ ]Required answer = 8 . tanθ.cos2θ .cos2θ.cos4θ cos8θ Required answer = 4 . 2sinθcosθ.cos2θ.cos4θ cos8θ Required answer = 4 . sin2θ.cos2θ.cos4θ cos8θ Required answer = 2 . 2sin2θ.cos2θ.cos4θ cos8θ Required answer = 2sin4θ.cos4θ cos8θ Required answer = sin8θ = tan8θ cos8θ Correct Option: Btan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ  1 + 1   1 + 1    1 + 1  cos2θ cos4θ cos8θ tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ  cos2θ + 1   cos4θ + 1    cos8θ + 1  cos2θ cos4θ cos8θ tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ  2cos2θ   2cos22θ    2cos24θ  cos2θ cos4θ cos8θ 
 [ ∴ 1 + cos2θ = 2cos2θ ]Required answer = 8 . tanθ.cos2θ .cos2θ.cos4θ cos8θ Required answer = 4 . 2sinθcosθ.cos2θ.cos4θ cos8θ Required answer = 4 . sin2θ.cos2θ.cos4θ cos8θ Required answer = 2 . 2sin2θ.cos2θ.cos4θ cos8θ Required answer = 2sin4θ.cos4θ cos8θ Required answer = sin8θ = tan8θ cos8θ 
-  If tanθ1 = 1, sinθ2 = 1 , then the value of sin (θ1 + θ2) equal to √2 
- 
                        View Hint View Answer Discuss in Forum tanθ1 = 1 = tan 45° 
 ⇒ θ1 = 45°Again , sinθ2 = 1 = sin45° √2 
 ⇒ θ2 = 45°
 ∴ sin(θ1 + θ2) = sin90° = 1Correct Option: Ctanθ1 = 1 = tan 45° 
 ⇒ θ1 = 45°Again , sinθ2 = 1 = sin45° √2 
 ⇒ θ2 = 45°
 ∴ sin(θ1 + θ2) = sin90° = 1
 
	