Trigonometry
- If sinθ + cosecθ = 2, the value of sin100θ + cosec100θ is :
-
View Hint View Answer Discuss in Forum
sinθ + cosecθ = 2
⇒ sinθ + 1 = 2 sinθ
⇒ sin2θ + 1 = 2sinθ
⇒ sin2θ - 2sinθ + 1 = 0
⇒ (sinθ - 1)2 = 0
⇒ sinθ = 1∴ cosecθ = 1 = 1 sinθ
∴ sin100θ + cosec100θ = 1 + 1 = 2Correct Option: B
sinθ + cosecθ = 2
⇒ sinθ + 1 = 2 sinθ
⇒ sin2θ + 1 = 2sinθ
⇒ sin2θ - 2sinθ + 1 = 0
⇒ (sinθ - 1)2 = 0
⇒ sinθ = 1∴ cosecθ = 1 = 1 sinθ
∴ sin100θ + cosec100θ = 1 + 1 = 2
-
The value of sin 65° is cos 25°
-
View Hint View Answer Discuss in Forum
sin 65° = sin( 90° - 25° ) cos 25° cos 25° ⇒ sin 65° = cos25° = 1 cos 25° cos 25° Correct Option: B
sin 65° = sin( 90° - 25° ) cos 25° cos 25° ⇒ sin 65° = cos25° = 1 cos 25° cos 25°
-
If sinx + sinx = 4 ; and 0° < x < 90°, then find the value of x 1 + cosx 1 - cosx
-
View Hint View Answer Discuss in Forum
sinx + sinx = 4 1 + cosx 1 - cosx ⇒ sinx(1 - cosx) + sinx(1 + cosx) = 4 (1 + cosx)(1 - cosx) ⇒ sinx - cosx.sinx + sinx + cosx.sinx = 4 (1 - cos2x) ⇒ 2sinx = 4 sin2x
⇒ 2sinx = 1⇒ sinx = 1 = sin30° ⇒ x = 30° 2 Correct Option: D
sinx + sinx = 4 1 + cosx 1 - cosx ⇒ sinx(1 - cosx) + sinx(1 + cosx) = 4 (1 + cosx)(1 - cosx) ⇒ sinx - cosx.sinx + sinx + cosx.sinx = 4 (1 - cos2x) ⇒ 2sinx = 4 sin2x
⇒ 2sinx = 1⇒ sinx = 1 = sin30° ⇒ x = 30° 2
- Find the value of tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ).
-
View Hint View Answer Discuss in Forum
tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ 1 + 1 1 + 1 1 + 1 cos2θ cos4θ cos8θ tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ cos2θ + 1 cos4θ + 1 cos8θ + 1 cos2θ cos4θ cos8θ tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ 2cos2θ 2cos22θ 2cos24θ cos2θ cos4θ cos8θ
[ ∴ 1 + cos2θ = 2cos2θ ]Required answer = 8 . tanθ.cos2θ .cos2θ.cos4θ cos8θ Required answer = 4 . 2sinθcosθ.cos2θ.cos4θ cos8θ Required answer = 4 . sin2θ.cos2θ.cos4θ cos8θ Required answer = 2 . 2sin2θ.cos2θ.cos4θ cos8θ Required answer = 2sin4θ.cos4θ cos8θ Required answer = sin8θ = tan8θ cos8θ Correct Option: B
tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ 1 + 1 1 + 1 1 + 1 cos2θ cos4θ cos8θ tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ cos2θ + 1 cos4θ + 1 cos8θ + 1 cos2θ cos4θ cos8θ tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ 2cos2θ 2cos22θ 2cos24θ cos2θ cos4θ cos8θ
[ ∴ 1 + cos2θ = 2cos2θ ]Required answer = 8 . tanθ.cos2θ .cos2θ.cos4θ cos8θ Required answer = 4 . 2sinθcosθ.cos2θ.cos4θ cos8θ Required answer = 4 . sin2θ.cos2θ.cos4θ cos8θ Required answer = 2 . 2sin2θ.cos2θ.cos4θ cos8θ Required answer = 2sin4θ.cos4θ cos8θ Required answer = sin8θ = tan8θ cos8θ
-
If tanθ1 = 1, sinθ2 = 1 , then the value of sin (θ1 + θ2) equal to √2
-
View Hint View Answer Discuss in Forum
tanθ1 = 1 = tan 45°
⇒ θ1 = 45°Again , sinθ2 = 1 = sin45° √2
⇒ θ2 = 45°
∴ sin(θ1 + θ2) = sin90° = 1Correct Option: C
tanθ1 = 1 = tan 45°
⇒ θ1 = 45°Again , sinθ2 = 1 = sin45° √2
⇒ θ2 = 45°
∴ sin(θ1 + θ2) = sin90° = 1