Trigonometry


  1. If 7 sin²θ+ 3 cos²θ= 4 (0° ≤ θ ≤ 90°), then value of θ is









  1. View Hint View Answer Discuss in Forum

    7 sin²θ + 3 cos²θ = 4
    ⇒ 7 sin²θ + 3 (1 – sin²θ) = 4
    ⇒ 7 sin²θ + 3 – 3 sin²θ = 4
    ⇒ 4 sin²θ = 4 – 3 = 1

    ⇒ sin²θ =
    1
    4

    ⇒ sinθ =
    1
    = sin
    π
    26


    ⇒ θ =
    π
    6

    Correct Option: C

    7 sin²θ + 3 cos²θ = 4
    ⇒ 7 sin²θ + 3 (1 – sin²θ) = 4
    ⇒ 7 sin²θ + 3 – 3 sin²θ = 4
    ⇒ 4 sin²θ = 4 – 3 = 1

    ⇒ sin²θ =
    1
    4

    ⇒ sinθ =
    1
    = sin
    π
    26


    ⇒ θ =
    π
    6


  1. If 7 sin²θ+ 3 cos²θ= 4 (0° ≤ θ ≤ 90°), then value of θ is









  1. View Hint View Answer Discuss in Forum

    7 sin²θ + 3 cos²θ = 4
    ⇒ 7 sin²θ + 3 (1 – sin²θ) = 4
    ⇒ 7 sin²θ + 3 – 3 sin²θ = 4
    ⇒ 4 sin²θ = 4 – 3 = 1

    ⇒ sin²θ =
    1
    4

    ⇒ sinθ =
    1
    = sin
    π
    26


    ⇒ θ =
    π
    6

    Correct Option: C

    7 sin²θ + 3 cos²θ = 4
    ⇒ 7 sin²θ + 3 (1 – sin²θ) = 4
    ⇒ 7 sin²θ + 3 – 3 sin²θ = 4
    ⇒ 4 sin²θ = 4 – 3 = 1

    ⇒ sin²θ =
    1
    4

    ⇒ sinθ =
    1
    = sin
    π
    26


    ⇒ θ =
    π
    6



  1. If tanπ-θ= √3, the value of cosθ is :
    22









  1. View Hint View Answer Discuss in Forum

    tanπ-θ= √3
    22

    ⇒ cot
    θ
    = √3 = cot30°
    2

    θ
    = 30° ⇒ θ = 60°
    2

    ∴ cos θ = cos 60° =
    1
    2

    Correct Option: C

    tanπ-θ= √3
    22

    ⇒ cot
    θ
    = √3 = cot30°
    2

    θ
    = 30° ⇒ θ = 60°
    2

    ∴ cos θ = cos 60° =
    1
    2


  1. If sec (7θ + 28°) = cosec (30° – 3θ) then the value of θ is









  1. View Hint View Answer Discuss in Forum

    sec (7θ + 28°)
    = cosec (30° – 3θ)
    ⇒ sec (7θ + 28°)
    = sec (90° – (30° –3θ))
    ⇒ 7θ + 28° = 90° – 30° + 3θ
    ⇒ 4θ = 90° – 30° – 28° = 32°

    ⇒ θ =
    32°
    = 8°
    4

    Correct Option: A

    sec (7θ + 28°)
    = cosec (30° – 3θ)
    ⇒ sec (7θ + 28°)
    = sec (90° – (30° –3θ))
    ⇒ 7θ + 28° = 90° – 30° + 3θ
    ⇒ 4θ = 90° – 30° – 28° = 32°

    ⇒ θ =
    32°
    = 8°
    4



  1. The value of (tan35° tan45° tan55°) is









  1. View Hint View Answer Discuss in Forum

    tan 35° . tan 45° . tan 55°
    = tan 35° . 1 . tan (90° – 35°)
    = tan 35° . 1 . cot 35° = 1.1 = 1
    [tan (90° – θ) = cot θ ; tan θ . cot θ = 1]

    Correct Option: D

    tan 35° . tan 45° . tan 55°
    = tan 35° . 1 . tan (90° – 35°)
    = tan 35° . 1 . cot 35° = 1.1 = 1
    [tan (90° – θ) = cot θ ; tan θ . cot θ = 1]