Trigonometry
-  If 7 sin²θ+ 3 cos²θ= 4 (0° ≤ θ ≤ 90°), then value of θ is
- 
                        View Hint View Answer Discuss in Forum 7 sin²θ + 3 cos²θ = 4 
 ⇒ 7 sin²θ + 3 (1 – sin²θ) = 4
 ⇒ 7 sin²θ + 3 – 3 sin²θ = 4
 ⇒ 4 sin²θ = 4 – 3 = 1⇒ sin²θ = 1 4 ⇒ sinθ = 1 = sin π 2 6  ⇒ θ = π 6 
 Correct Option: C7 sin²θ + 3 cos²θ = 4 
 ⇒ 7 sin²θ + 3 (1 – sin²θ) = 4
 ⇒ 7 sin²θ + 3 – 3 sin²θ = 4
 ⇒ 4 sin²θ = 4 – 3 = 1⇒ sin²θ = 1 4 ⇒ sinθ = 1 = sin π 2 6  ⇒ θ = π 6 
 
-  If 7 sin²θ+ 3 cos²θ= 4 (0° ≤ θ ≤ 90°), then value of θ is
- 
                        View Hint View Answer Discuss in Forum 7 sin²θ + 3 cos²θ = 4 
 ⇒ 7 sin²θ + 3 (1 – sin²θ) = 4
 ⇒ 7 sin²θ + 3 – 3 sin²θ = 4
 ⇒ 4 sin²θ = 4 – 3 = 1⇒ sin²θ = 1 4 ⇒ sinθ = 1 = sin π 2 6  ⇒ θ = π 6 
 Correct Option: C7 sin²θ + 3 cos²θ = 4 
 ⇒ 7 sin²θ + 3 (1 – sin²θ) = 4
 ⇒ 7 sin²θ + 3 – 3 sin²θ = 4
 ⇒ 4 sin²θ = 4 – 3 = 1⇒ sin²θ = 1 4 ⇒ sinθ = 1 = sin π 2 6  ⇒ θ = π 6 
 
-  If tan  π - θ  = √3, the value of cosθ is : 2 2 
- 
                        View Hint View Answer Discuss in Forum tan  π - θ  = √3 2 2 ⇒ cot θ = √3 = cot30° 2 ⇒ θ = 30° ⇒ θ = 60° 2 ∴ cos θ = cos 60° = 1 2 
 Correct Option: Ctan  π - θ  = √3 2 2 ⇒ cot θ = √3 = cot30° 2 ⇒ θ = 30° ⇒ θ = 60° 2 ∴ cos θ = cos 60° = 1 2 
 
-  If sec (7θ + 28°) = cosec (30° – 3θ) then the value of θ is
- 
                        View Hint View Answer Discuss in Forum sec (7θ + 28°) 
 = cosec (30° – 3θ)
 ⇒ sec (7θ + 28°)
 = sec (90° – (30° –3θ))
 ⇒ 7θ + 28° = 90° – 30° + 3θ
 ⇒ 4θ = 90° – 30° – 28° = 32°⇒ θ = 32° = 8° 4 
 Correct Option: Asec (7θ + 28°) 
 = cosec (30° – 3θ)
 ⇒ sec (7θ + 28°)
 = sec (90° – (30° –3θ))
 ⇒ 7θ + 28° = 90° – 30° + 3θ
 ⇒ 4θ = 90° – 30° – 28° = 32°⇒ θ = 32° = 8° 4 
 
-  The value of (tan35° tan45° tan55°) is
- 
                        View Hint View Answer Discuss in Forum tan 35° . tan 45° . tan 55° 
 = tan 35° . 1 . tan (90° – 35°)
 = tan 35° . 1 . cot 35° = 1.1 = 1
 [tan (90° – θ) = cot θ ; tan θ . cot θ = 1]Correct Option: Dtan 35° . tan 45° . tan 55° 
 = tan 35° . 1 . tan (90° – 35°)
 = tan 35° . 1 . cot 35° = 1.1 = 1
 [tan (90° – θ) = cot θ ; tan θ . cot θ = 1]
 
	