Trigonometry


  1. If A, B and C be the angles of a triangle, then put of the following, the incorrect relation is :









  1. View Hint View Answer Discuss in Forum

    A + B + C = π

    A + B
    =
    π
    -
    C

    222

    ⇒ sin
    A + B
    2

    = sinπ-C
    22

    = cos
    C
    2

    Similarly,
    cosA + B = sinC
    22

    cotA + B = tanC
    22

    tanA + B = cotC
    22

    Correct Option: C

    A + B + C = π

    A + B
    =
    π
    -
    C

    222

    ⇒ sin
    A + B
    2

    = sinπ-C
    22

    = cos
    C
    2

    Similarly,
    cosA + B = sinC
    22

    cotA + B = tanC
    22

    tanA + B = cotC
    22


  1. If 0 < x < (π / 2) and secx = cosecy, then the value of sin (x + y) is :









  1. View Hint View Answer Discuss in Forum

    secx = cosecy
    ⇒ cosx = siny

    ⇒ sin
    π
    - x = siny
    2

    ⇒ y =
    π
    - x
    2

    ⇒ x + y =
    π
    2

    ∴ sin (x + y) = sin
    π
    = 1
    2

    Correct Option: B

    secx = cosecy
    ⇒ cosx = siny

    ⇒ sin
    π
    - x = siny
    2

    ⇒ y =
    π
    - x
    2

    ⇒ x + y =
    π
    2

    ∴ sin (x + y) = sin
    π
    = 1
    2



  1. If sec²θ tan²θ=
    7
    , then sec4θ - tan4θ =
    12









  1. View Hint View Answer Discuss in Forum

    sec⊃ θ – tan⊃ θ = 1

    sec⊃ θ + tan⊃ θ =
    7
    12

    ∴ sec4θ – tan4θ
    = (sec⊃ θ – tan⊃ θ) (sec⊃ θ + tan⊃ θ)
    = 1 ×
    7
    =
    7
    1212

    Correct Option: A

    sec⊃ θ – tan⊃ θ = 1

    sec⊃ θ + tan⊃ θ =
    7
    12

    ∴ sec4θ – tan4θ
    = (sec⊃ θ – tan⊃ θ) (sec⊃ θ + tan⊃ θ)
    = 1 ×
    7
    =
    7
    1212


  1. If θ be acute angle and cos θ = (15 / 17) , then the value of cot
    (90° – θ) is









  1. View Hint View Answer Discuss in Forum

    cos θ =
    15
    7

    ⇒ sec θ =
    1
    =
    17
    cos θ15

    ∴ cot (90° – θ) = tan θ
    sec⊃ θ - 1

    Correct Option: B

    cos θ =
    15
    7

    ⇒ sec θ =
    1
    =
    17
    cos θ15

    ∴ cot (90° – θ) = tan θ
    sec⊃ θ - 1



  1. If tan (2θ + 45°) = cot 3θ where (2θ + 45°) and 3θ are acute angles, then the value of θ is









  1. View Hint View Answer Discuss in Forum

    tan (2θ + 45°) = cot 3θ
    = tan (90° – 3θ )
    ⇒ 2θ + 45° = 90° – 3θ
    ⇒ 5θ = 90° – 45° = 45°
    ∴ θ = 9°

    Correct Option: B

    tan (2θ + 45°) = cot 3θ
    = tan (90° – 3θ )
    ⇒ 2θ + 45° = 90° – 3θ
    ⇒ 5θ = 90° – 45° = 45°
    ∴ θ = 9°