Trigonometry
-  If sinθ + cosecθ = 2, then value of sin100θ + cosec100θ is equal to :
- 
                        View Hint View Answer Discuss in Forum sinθ + cosecθ = 2 ⇒ sin θ + 1 = 2 sin θ 
 ⇒ sin2θ – 2 sinθ + 1 = 0
 ⇒ (sinθ – 1) = 0
 ⇒ sinθ = 1 ⇒ cosecθ = 1
 ∴ sin100θ + cosec100θ
 = 1+ 1 = 2Correct Option: Bsinθ + cosecθ = 2 ⇒ sin θ + 1 = 2 sin θ 
 ⇒ sin2θ – 2 sinθ + 1 = 0
 ⇒ (sinθ – 1) = 0
 ⇒ sinθ = 1 ⇒ cosecθ = 1
 ∴ sin100θ + cosec100θ
 = 1+ 1 = 2
-  The simplified value of (see x sec y + tan x tan y)² – (sex x tan y + tan x sec y)² is :
- 
                        View Hint View Answer Discuss in Forum (secx . secy + tanx . tany)² – (sec x . tan y + tan x . sec y)² 
 = sec² x . sec² y + tan² x . tan²y + 2 sec x . sec y . tan x . tan y – sec² x . tan² y – tan² x . sec²y – 2 sec x . sec y . tan x . tan y
 = sec² x . sec²y + tan²x . tan² y – sec² x . tan²y – tan² x . sec²y
 = sec²x . sec²y – sec²x . tan²y – tan²x . sec²y + tan² x . tan²y
 = sec²x (sec²y – tan²y) – tan²x (sec²y – tan²y)
 = sec²x – tan²x = 1Correct Option: D(secx . secy + tanx . tany)² – (sec x . tan y + tan x . sec y)² 
 = sec² x . sec² y + tan² x . tan²y + 2 sec x . sec y . tan x . tan y – sec² x . tan² y – tan² x . sec²y – 2 sec x . sec y . tan x . tan y
 = sec² x . sec²y + tan²x . tan² y – sec² x . tan²y – tan² x . sec²y
 = sec²x . sec²y – sec²x . tan²y – tan²x . sec²y + tan² x . tan²y
 = sec²x (sec²y – tan²y) – tan²x (sec²y – tan²y)
 = sec²x – tan²x = 1
-  If sec²θ + tan²θ = 7, then the value of θ when 0° ≤ θ ≤ 90°, is
- 
                        View Hint View Answer Discuss in Forum sec²θ + tan²θ = 7 
 ⇒ 1 + tan²θ + tan²θ = 7
 ⇒ 2 tan²θ = 7 – 1 = 6
 ⇒ tan²θ = 3 ⇒ tanθ = 3
 ⇒ θ = 60°Correct Option: Asec²θ + tan²θ = 7 
 ⇒ 1 + tan²θ + tan²θ = 7
 ⇒ 2 tan²θ = 7 – 1 = 6
 ⇒ tan²θ = 3 ⇒ tanθ = 3
 ⇒ θ = 60°
-  If sin θ + cos θ = 3, then the value of sin4θ – cos4θ is sin θ - cos θ 
- 
                        View Hint View Answer Discuss in Forum sin θ + cos θ = 3 sin θ + cos θ 
 ⇒ sinθ + cosθ = 3sinθ – 3 cosθ
 ⇒ 4cosθ = 2 sinθ ⇒ tanθ = 2
 ∴ sin4θ – cos4θ
 = (sin²θ + cos²θ) (sin²θ – cos²θ)
 = sin²θ– cos²θ
 = cos²θ (tan² θ – 1)= tan²θ - 1 ²θ = tan²θ - 1 = 4 - 1 = 3 1 + tan²θ 1 + 4 5 
 Correct Option: Csin θ + cos θ = 3 sin θ + cos θ 
 ⇒ sinθ + cosθ = 3sinθ – 3 cosθ
 ⇒ 4cosθ = 2 sinθ ⇒ tanθ = 2
 ∴ sin4θ – cos4θ
 = (sin²θ + cos²θ) (sin²θ – cos²θ)
 = sin²θ– cos²θ
 = cos²θ (tan² θ – 1)= tan²θ - 1 ²θ = tan²θ - 1 = 4 - 1 = 3 1 + tan²θ 1 + 4 5 
 
-  If 2cosθ – sinθ = (1 / √2) , (0° < q < 90°) the value of 2 sinθ + cosθ is
- 
                        View Hint View Answer Discuss in Forum 2 cosθ – sinθ = 1 √2 
 2sinθ + cosθ = x (Let)
 On squaring and adding,
 4cos²θ + sin²θ – 4 sinθ . cosθ + 4 sin²θ + cos²θ+ 4 sinθ.cosθ= 1 x² 2 ⇒ 1 + x² = 5 2 ⇒x² = 5 - 1 = 9 ⇒ x = 3 2 2 √2 
 Correct Option: C2 cosθ – sinθ = 1 √2 
 2sinθ + cosθ = x (Let)
 On squaring and adding,
 4cos²θ + sin²θ – 4 sinθ . cosθ + 4 sin²θ + cos²θ+ 4 sinθ.cosθ= 1 x² 2 ⇒ 1 + x² = 5 2 ⇒x² = 5 - 1 = 9 ⇒ x = 3 2 2 √2 
 
 
	