Trigonometry


  1. Evaluate : 3 cos 80° cosec 10° + 2 cos 59° cosec 31°









  1. View Hint View Answer Discuss in Forum

    3 cos 80°. cosec 10° + 2 cos 59° . cosec 31°
    = 3cos(90°–10°). cosec 10° + 2 cos(90°– 31°) . cosec 31°
    = 3 sin 10°. cosec 10° + 2 sin 31°. cosec 31°
    = 3 + 2 = 5
    [ ∵ cos (90°– θ) = sinθ ; sinθ . cosecθ = 1]

    Correct Option: D

    3 cos 80°. cosec 10° + 2 cos 59° . cosec 31°
    = 3cos(90°–10°). cosec 10° + 2 cos(90°– 31°) . cosec 31°
    = 3 sin 10°. cosec 10° + 2 sin 31°. cosec 31°
    = 3 + 2 = 5
    [ ∵ cos (90°– θ) = sinθ ; sinθ . cosecθ = 1]


  1. The value of 152 (sin 30° + 2 cos² 45° + 3 sin 30° + 4 cos² 45° + .... + 17 sin 30°+ 18 cos² 45°) is









  1. View Hint View Answer Discuss in Forum

    152 (sin 30° + 2 cos² 45° + 3 sin 30° + 4 cos² 45° + .... + 17 sin 30° + 18 cos² 45°)

    It is an A.P. whose a =
    1
    , d =
    1
    , n = 18
    22


    =
    152 × 9 × 19
    = 12996 and √12996 = 114
    2

    i.e. a perfect square of an integer.

    Correct Option: C

    152 (sin 30° + 2 cos² 45° + 3 sin 30° + 4 cos² 45° + .... + 17 sin 30° + 18 cos² 45°)

    It is an A.P. whose a =
    1
    , d =
    1
    , n = 18
    22


    =
    152 × 9 × 19
    = 12996 and √12996 = 114
    2

    i.e. a perfect square of an integer.



  1. Maximum value of (2 sin θ + 3 cos θ) is









  1. View Hint View Answer Discuss in Forum

    Maximum value of a sin θ + b
    cos θ = √a² + b²
    ∴ Maximum value of 2 sin θ + 3
    cos θ = √2² + 3² = √3

    Correct Option: B

    Maximum value of a sin θ + b
    cos θ = √a² + b²
    ∴ Maximum value of 2 sin θ + 3
    cos θ = √2² + 3² = √3


  1. If sin (A – B) = (1 / 2) and cos (A + B) = (1 / 2) where A > B > 0 and A + B is an acute angle, then the value B is









  1. View Hint View Answer Discuss in Forum

    sin (A – B) =
    1
    = sin 30°
    2

    ⇒ A - B = 30°
    Again, cos (A + B) =
    1
    = cos 30°
    2

    ⇒ A + B = 60°
    ∴ A + B + A – B = 30° + 60° = 90°
    ⇒ 2 A = 90°
    ⇒ A = 45°
    ∴ A - B = 30°
    ⇒ B = A - 30° = 45° - 30° = 15°
    =
    15 × π
    =
    π
    radian
    18012

    Correct Option: B

    sin (A – B) =
    1
    = sin 30°
    2

    ⇒ A - B = 30°
    Again, cos (A + B) =
    1
    = cos 30°
    2

    ⇒ A + B = 60°
    ∴ A + B + A – B = 30° + 60° = 90°
    ⇒ 2 A = 90°
    ⇒ A = 45°
    ∴ A - B = 30°
    ⇒ B = A - 30° = 45° - 30° = 15°
    =
    15 × π
    =
    π
    radian
    18012



  1. If a sin θ + b cos θ = c then the value of a cos θ – b sin θ is :









  1. View Hint View Answer Discuss in Forum

    a sin θ + bcos θ = c ...(i)
    a cos θ – b sin θ = x ...(ii)
    Squaring both the equations and adding,
    a² sin² θ + b² cos² θ + 2 ab
    sin θ. cos θ + a² cos² θ + b² sin² θ – 2ab sin θ . cos θ = c² + x²
    ⇒ a² sin² θ + a² cos² θ + b² cos² θ + b² sin² θ = c² + x²
    ⇒ a² (sin² θ + cos² θ) + b² (cos² θ + sin² θ) = c² + x²
    ⇒ a² + b² = c² + x²
    ⇒ x² = a² + b² – c²
    ⇒ x = ± √a² + b² - c²

    Correct Option: B

    a sin θ + bcos θ = c ...(i)
    a cos θ – b sin θ = x ...(ii)
    Squaring both the equations and adding,
    a² sin² θ + b² cos² θ + 2 ab
    sin θ. cos θ + a² cos² θ + b² sin² θ – 2ab sin θ . cos θ = c² + x²
    ⇒ a² sin² θ + a² cos² θ + b² cos² θ + b² sin² θ = c² + x²
    ⇒ a² (sin² θ + cos² θ) + b² (cos² θ + sin² θ) = c² + x²
    ⇒ a² + b² = c² + x²
    ⇒ x² = a² + b² – c²
    ⇒ x = ± √a² + b² - c²