Trigonometry
-  Evaluate : 3 cos 80° cosec 10° + 2 cos 59° cosec 31°
- 
                        View Hint View Answer Discuss in Forum 3 cos 80°. cosec 10° + 2 cos 59° . cosec 31° 
 = 3cos(90°–10°). cosec 10° + 2 cos(90°– 31°) . cosec 31°
 = 3 sin 10°. cosec 10° + 2 sin 31°. cosec 31°
 = 3 + 2 = 5
 [ ∵ cos (90°– θ) = sinθ ; sinθ . cosecθ = 1]Correct Option: D3 cos 80°. cosec 10° + 2 cos 59° . cosec 31° 
 = 3cos(90°–10°). cosec 10° + 2 cos(90°– 31°) . cosec 31°
 = 3 sin 10°. cosec 10° + 2 sin 31°. cosec 31°
 = 3 + 2 = 5
 [ ∵ cos (90°– θ) = sinθ ; sinθ . cosecθ = 1]
-  The value of 152 (sin 30° + 2 cos² 45° + 3 sin 30° + 4 cos² 45° + .... + 17 sin 30°+ 18 cos² 45°) is
- 
                        View Hint View Answer Discuss in Forum 152 (sin 30° + 2 cos² 45° + 3 sin 30° + 4 cos² 45° + .... + 17 sin 30° + 18 cos² 45°)  It is an A.P. whose a = 1 , d = 1 , n = 18 2 2  = 152 × 9 × 19 = 12996 and √12996 = 114 2 
 i.e. a perfect square of an integer.Correct Option: C152 (sin 30° + 2 cos² 45° + 3 sin 30° + 4 cos² 45° + .... + 17 sin 30° + 18 cos² 45°)  It is an A.P. whose a = 1 , d = 1 , n = 18 2 2  = 152 × 9 × 19 = 12996 and √12996 = 114 2 
 i.e. a perfect square of an integer.
-  Maximum value of (2 sin θ + 3 cos θ) is
- 
                        View Hint View Answer Discuss in Forum Maximum value of a sin θ + b 
 cos θ = √a² + b²
 ∴ Maximum value of 2 sin θ + 3
 cos θ = √2² + 3² = √3Correct Option: BMaximum value of a sin θ + b 
 cos θ = √a² + b²
 ∴ Maximum value of 2 sin θ + 3
 cos θ = √2² + 3² = √3
-  If sin (A – B) = (1 / 2) and cos (A + B) = (1 / 2) where A > B > 0 and A + B is an acute angle, then the value B is
- 
                        View Hint View Answer Discuss in Forum sin (A – B) = 1 = sin 30° 2 
 ⇒ A - B = 30°Again, cos (A + B) = 1 = cos 30° 2 
 ⇒ A + B = 60°
 ∴ A + B + A – B = 30° + 60° = 90°
 ⇒ 2 A = 90°
 ⇒ A = 45°
 ∴ A - B = 30°
 ⇒ B = A - 30° = 45° - 30° = 15°= 15 × π = π radian 180 12 
 Correct Option: Bsin (A – B) = 1 = sin 30° 2 
 ⇒ A - B = 30°Again, cos (A + B) = 1 = cos 30° 2 
 ⇒ A + B = 60°
 ∴ A + B + A – B = 30° + 60° = 90°
 ⇒ 2 A = 90°
 ⇒ A = 45°
 ∴ A - B = 30°
 ⇒ B = A - 30° = 45° - 30° = 15°= 15 × π = π radian 180 12 
 
-  If a sin θ + b cos θ = c then the value of a cos θ – b sin θ is :
- 
                        View Hint View Answer Discuss in Forum a sin θ + bcos θ = c ...(i) 
 a cos θ – b sin θ = x ...(ii)
 Squaring both the equations and adding,
 a² sin² θ + b² cos² θ + 2 ab
 sin θ. cos θ + a² cos² θ + b² sin² θ – 2ab sin θ . cos θ = c² + x²
 ⇒ a² sin² θ + a² cos² θ + b² cos² θ + b² sin² θ = c² + x²
 ⇒ a² (sin² θ + cos² θ) + b² (cos² θ + sin² θ) = c² + x²
 ⇒ a² + b² = c² + x²
 ⇒ x² = a² + b² – c²
 ⇒ x = ± √a² + b² - c²Correct Option: Ba sin θ + bcos θ = c ...(i) 
 a cos θ – b sin θ = x ...(ii)
 Squaring both the equations and adding,
 a² sin² θ + b² cos² θ + 2 ab
 sin θ. cos θ + a² cos² θ + b² sin² θ – 2ab sin θ . cos θ = c² + x²
 ⇒ a² sin² θ + a² cos² θ + b² cos² θ + b² sin² θ = c² + x²
 ⇒ a² (sin² θ + cos² θ) + b² (cos² θ + sin² θ) = c² + x²
 ⇒ a² + b² = c² + x²
 ⇒ x² = a² + b² – c²
 ⇒ x = ± √a² + b² - c²
 
	