Trigonometry
- If x sin 60° tan 30° – tan²45° = cosec 60° cot 30° – sec²45°, then x =
-
View Hint View Answer Discuss in Forum
x sin60° tan 30° – tan²45°
= cosec 60°. cot30° – sec²45°⇒ x . √3 . 1 - 1 2 √3 = 2 × √3- (√2)² √3 ⇒ x - 1 = 2 - 2 = 0 2 ⇒ x = 1 ⇒ x = 2 2
Correct Option: A
x sin60° tan 30° – tan²45°
= cosec 60°. cot30° – sec²45°⇒ x . √3 . 1 - 1 2 √3 = 2 × √3- (√2)² √3 ⇒ x - 1 = 2 - 2 = 0 2 ⇒ x = 1 ⇒ x = 2 2
- If x = a secα cosβ, y = b secα sinβ, z = c tan α, then the value of
x² + y² - z² is a² b² c²
-
View Hint View Answer Discuss in Forum
x = a secα . cosβ
⇒ x = secα . cosβ α
Similarly,y = secα . sinβ, z = tanα b c ∴ x² + y² - z² a² b² c²
= sec²α. cos²β + sec²α . sin²β – tan²α
= sec²α (cos²β + sin²β) – tan²α
= sec²α – tan²α = 1Correct Option: C
x = a secα . cosβ
⇒ x = secα . cosβ α
Similarly,y = secα . sinβ, z = tanα b c ∴ x² + y² - z² a² b² c²
= sec²α. cos²β + sec²α . sin²β – tan²α
= sec²α (cos²β + sin²β) – tan²α
= sec²α – tan²α = 1
- If θ = 60°, then (1 / 2)√1 + sin θ + (1 / 2)√1 - sin θ is equal to
-
View Hint View Answer Discuss in Forum
1 √1 + sin θ 1 √1 1 sin θ 2 2 = 1 (1 + sin 60°) + √1 - sin 60° 2 = 1 (√3 + 1 + √3 - 1) 4 = 2√3 = √3 = cos 30° 4 2 = cos θ 2
Correct Option: D
1 √1 + sin θ 1 √1 1 sin θ 2 2 = 1 (1 + sin 60°) + √1 - sin 60° 2 = 1 (√3 + 1 + √3 - 1) 4 = 2√3 = √3 = cos 30° 4 2 = cos θ 2
-
The value of cos² 60° + 4sec² 30° - tan² 45° is sin² 30° + cos² 30°
-
View Hint View Answer Discuss in Forum
Expression
= cos² 60° + 4sec² 30° - tan² 45° sin² 30° + cos² 30°
[∵ sin²θ + cos²θ = 1]= 1 + 16 - 1 4 3 = 3 + 64 - 12 = 55 12 3
Correct Option: B
Expression
= cos² 60° + 4sec² 30° - tan² 45° sin² 30° + cos² 30°
[∵ sin²θ + cos²θ = 1]= 1 + 16 - 1 4 3 = 3 + 64 - 12 = 55 12 3
- The value of sin²30° cos²45° + 5tan²30° + (3 / 2) sin²90° – 3 cos²90° is
-
View Hint View Answer Discuss in Forum
sin² 30° cos² 45° + 5 tan² 30° + 3 sin² 90° - 3cos² 90° 2 3 × 1 - 3 × 0 2 = 1 × 1 + 5 × 1 + 3 4 2 3 2 = 1 + 5 + 3 = 3 + 40 + 36 8 3 2 24 = 79 = 3 7 24 24
Correct Option: A
sin² 30° cos² 45° + 5 tan² 30° + 3 sin² 90° - 3cos² 90° 2 3 × 1 - 3 × 0 2 = 1 × 1 + 5 × 1 + 3 4 2 3 2 = 1 + 5 + 3 = 3 + 40 + 36 8 3 2 24 = 79 = 3 7 24 24