Trigonometry
-  If 29 tan θ = 31, then the value of1 + 2sin θ cos θ is equal to 1 - 2sin θ cos θ 
- 
                        View Hint View Answer Discuss in Forum 29 tanθ = 31 ⇒ tanθ = 31 29 Expression = 1 + 2sinθ .cosθ 1 - 2sinθ .cosθ = sin²θ + cos²θ + 2sin θ . cos θ sin²θ - cos²θ + 2sin θ . cos θ = (sinθ + cosθ)² (sinθ - cosθ)²  =  60  ² = (30)² = 900. 2 
 Correct Option: B29 tanθ = 31 ⇒ tanθ = 31 29 Expression = 1 + 2sinθ .cosθ 1 - 2sinθ .cosθ = sin²θ + cos²θ + 2sin θ . cos θ sin²θ - cos²θ + 2sin θ . cos θ = (sinθ + cosθ)² (sinθ - cosθ)²  =  60  ² = (30)² = 900. 2 
 
-  ABCD is a rectangle of which AC is a diagonal. The value of (tan² ∠CAD + 1) sin² ∠BAC is
- 
                        View Hint View Answer Discuss in Forum  
 ∠ACD = 45°
 ∠BAC = 45°
 ∴ (tan² ∠CAD + 1).sin² ∠BAC
 = (tan² 45° + 1) sin² 45°=(1 + 1) ×  1   = 2 × 1 = 1 √2 2 
 Correct Option: C 
 ∠ACD = 45°
 ∠BAC = 45°
 ∴ (tan² ∠CAD + 1).sin² ∠BAC
 = (tan² 45° + 1) sin² 45°=(1 + 1) ×  1   = 2 × 1 = 1 √2 2 
 
-  If 0° < θ < 90° and 2 sin²θ + 3 cosθ = 3, then the value of θ is
- 
                        View Hint View Answer Discuss in Forum 2 sin²θ + 3 cos θ = 3 
 ⇒ 2 (1–cos²θ) + 3 cos θ = 3
 ⇒ 2 – 2 cos²θ + 3 cos θ = 3
 ⇒ 2 cos²θ – 3 cos θ + 1 = 0
 ⇒ 2 cos²θ – 2 cos θ – cos θ + 1 = 0
 ⇒ 2 cos θ (cos θ – 1) –1 (cos θ – 1) = 0
 ⇒ (2 cos θ – 1) (cos θ – 1) = 0
 ⇒ 2 cos θ – 1 = 0
 ⇒ 2 cos θ = 1⇒ cos θ = 1 ⇒ θ = 60° 2 
 or, cos θ – 1 = 0
 ⇒ cos θ = 1
 ⇒ θ = 0°Correct Option: B2 sin²θ + 3 cos θ = 3 
 ⇒ 2 (1–cos²θ) + 3 cos θ = 3
 ⇒ 2 – 2 cos²θ + 3 cos θ = 3
 ⇒ 2 cos²θ – 3 cos θ + 1 = 0
 ⇒ 2 cos²θ – 2 cos θ – cos θ + 1 = 0
 ⇒ 2 cos θ (cos θ – 1) –1 (cos θ – 1) = 0
 ⇒ (2 cos θ – 1) (cos θ – 1) = 0
 ⇒ 2 cos θ – 1 = 0
 ⇒ 2 cos θ = 1⇒ cos θ = 1 ⇒ θ = 60° 2 
 or, cos θ – 1 = 0
 ⇒ cos θ = 1
 ⇒ θ = 0°
-  For any real values of θ,  
- 
                        View Hint View Answer Discuss in Forum  
 (Rationalising the numerator and the denominator) = 1 - cosθ = 1 - cos θ sin θ sin θ sin θ 
 = cosecθ – cotθ.
 Correct Option: C 
 (Rationalising the numerator and the denominator) = 1 - cosθ = 1 - cos θ sin θ sin θ sin θ 
 = cosecθ – cotθ.
 
-  If the sum and difference of two angles are 135° and (π / 12) respectively, then the value of the angles in degree measure are
- 
                        View Hint View Answer Discuss in Forum Let the angles be A and B where A > B 
 ∴ A + B = 135°
 and, A – B= π = π × 180° = 15° 12 12 π 
 On adding
 A + B + A – B
 = 135° + 15° = 150°⇒ 2A = 150 ° ⇒ A = 150 = 75° 2 
 ∴ A + B = 135°
 ⇒ B = 135° – 75° = 60°Correct Option: BLet the angles be A and B where A > B 
 ∴ A + B = 135°
 and, A – B= π = π × 180° = 15° 12 12 π 
 On adding
 A + B + A – B
 = 135° + 15° = 150°⇒ 2A = 150 ° ⇒ A = 150 = 75° 2 
 ∴ A + B = 135°
 ⇒ B = 135° – 75° = 60°
 
	