Trigonometry


  1. If 29 tan θ = 31, then the value of
    1 + 2sin θ cos θ
    is equal to
    1 - 2sin θ cos θ









  1. View Hint View Answer Discuss in Forum

    29 tanθ = 31 ⇒ tanθ =
    31
    29

    Expression =
    1 + 2sinθ .cosθ
    1 - 2sinθ .cosθ

    =
    sin²θ + cos²θ + 2sin θ . cos θ
    sin²θ - cos²θ + 2sin θ . cos θ

    =
    (sinθ + cosθ)²
    (sinθ - cosθ)²


    =60² = (30)² = 900.
    2

    Correct Option: B

    29 tanθ = 31 ⇒ tanθ =
    31
    29

    Expression =
    1 + 2sinθ .cosθ
    1 - 2sinθ .cosθ

    =
    sin²θ + cos²θ + 2sin θ . cos θ
    sin²θ - cos²θ + 2sin θ . cos θ

    =
    (sinθ + cosθ)²
    (sinθ - cosθ)²


    =60² = (30)² = 900.
    2


  1. ABCD is a rectangle of which AC is a diagonal. The value of (tan² ∠CAD + 1) sin² ∠BAC is









  1. View Hint View Answer Discuss in Forum


    ∠ACD = 45°
    ∠BAC = 45°
    ∴ (tan² ∠CAD + 1).sin² ∠BAC
    = (tan² 45° + 1) sin² 45°

    =(1 + 1) ×1 = 2 ×1= 1
    22

    Correct Option: C


    ∠ACD = 45°
    ∠BAC = 45°
    ∴ (tan² ∠CAD + 1).sin² ∠BAC
    = (tan² 45° + 1) sin² 45°

    =(1 + 1) ×1 = 2 ×1= 1
    22



  1. If 0° < θ < 90° and 2 sin²θ + 3 cosθ = 3, then the value of θ is









  1. View Hint View Answer Discuss in Forum

    2 sin²θ + 3 cos θ = 3
    ⇒ 2 (1–cos²θ) + 3 cos θ = 3
    ⇒ 2 – 2 cos²θ + 3 cos θ = 3
    ⇒ 2 cos²θ – 3 cos θ + 1 = 0
    ⇒ 2 cos²θ – 2 cos θ – cos θ + 1 = 0
    ⇒ 2 cos θ (cos θ – 1) –1 (cos θ – 1) = 0
    ⇒ (2 cos θ – 1) (cos θ – 1) = 0
    ⇒ 2 cos θ – 1 = 0
    ⇒ 2 cos θ = 1

    ⇒ cos θ =
    1
    ⇒ θ = 60°
    2

    or, cos θ – 1 = 0
    ⇒ cos θ = 1
    ⇒ θ = 0°

    Correct Option: B

    2 sin²θ + 3 cos θ = 3
    ⇒ 2 (1–cos²θ) + 3 cos θ = 3
    ⇒ 2 – 2 cos²θ + 3 cos θ = 3
    ⇒ 2 cos²θ – 3 cos θ + 1 = 0
    ⇒ 2 cos²θ – 2 cos θ – cos θ + 1 = 0
    ⇒ 2 cos θ (cos θ – 1) –1 (cos θ – 1) = 0
    ⇒ (2 cos θ – 1) (cos θ – 1) = 0
    ⇒ 2 cos θ – 1 = 0
    ⇒ 2 cos θ = 1

    ⇒ cos θ =
    1
    ⇒ θ = 60°
    2

    or, cos θ – 1 = 0
    ⇒ cos θ = 1
    ⇒ θ = 0°


  1. For any real values of θ,










  1. View Hint View Answer Discuss in Forum


    (Rationalising the numerator and the denominator)

    =
    1 - cosθ
    =
    1
    -
    cos θ

    sin θsin θsin θ

    = cosecθ – cotθ.

    Correct Option: C


    (Rationalising the numerator and the denominator)

    =
    1 - cosθ
    =
    1
    -
    cos θ

    sin θsin θsin θ

    = cosecθ – cotθ.



  1. If the sum and difference of two angles are 135° and (π / 12) respectively, then the value of the angles in degree measure are









  1. View Hint View Answer Discuss in Forum

    Let the angles be A and B where A > B
    ∴ A + B = 135°
    and, A – B

    =
    π
    =
    π
    ×
    180°
    = 15°
    1212π

    On adding
    A + B + A – B
    = 135° + 15° = 150°
    ⇒ 2A = 150 ° ⇒ A =
    150
    = 75°
    2

    ∴ A + B = 135°
    ⇒ B = 135° – 75° = 60°

    Correct Option: B

    Let the angles be A and B where A > B
    ∴ A + B = 135°
    and, A – B

    =
    π
    =
    π
    ×
    180°
    = 15°
    1212π

    On adding
    A + B + A – B
    = 135° + 15° = 150°
    ⇒ 2A = 150 ° ⇒ A =
    150
    = 75°
    2

    ∴ A + B = 135°
    ⇒ B = 135° – 75° = 60°