Trigonometry
-  If 2 (cos²θ– sin²θ) = 1, θ is a positive acute angle, then the value of θ is
- 
                        View Hint View Answer Discuss in Forum 2 (cos⊃θ – sin⊃θ) = 1 ⇒ cosec²θ - sin²θ = 1 2 ⇒ 1 - 2 sin²θ = 1 2 ⇒ 2 sin²θ = 1 - 1 2 ⇒ 2 sin²θ = 1 ⇒ sin²θ = 1 2 4 ⇒ sin²θ = ± 1 = sin30° 2   Correct Option: B2 (cos⊃θ – sin⊃θ) = 1 ⇒ cosec²θ - sin²θ = 1 2 ⇒ 1 - 2 sin²θ = 1 2 ⇒ 2 sin²θ = 1 - 1 2 ⇒ 2 sin²θ = 1 ⇒ sin²θ = 1 2 4 ⇒ sin²θ = ± 1 = sin30° 2   
-  If cos θ cosec 23° = 1, the value of θ is
- 
                        View Hint View Answer Discuss in Forum cosθ.cosec23° = 1 ⇒ 1 = secθ cos θ 
 ⇒ cosec23° = cosec(90° – θ)
 ⇒ 23° = 90° – θ
 ⇒ θ = 90° – 23° = 67°Correct Option: Dcosθ.cosec23° = 1 ⇒ 1 = secθ cos θ 
 ⇒ cosec23° = cosec(90° – θ)
 ⇒ 23° = 90° – θ
 ⇒ θ = 90° – 23° = 67°
-  If sin (3x – 20°) = cos (3y + 20°), then the value of (x + y) is
- 
                        View Hint View Answer Discuss in Forum sin(3x – 20°) 
 = cos (3y + 20°)
 ⇒ sin (3x – 20°)
 = sin(90° – 3y – 20°)
 = sin(70° – 3y)
 ⇒ 3x – 20° = 70° – 3y
 ⇒ 3x + 3y = 90°
 ⇒ 3(x + y) = 90°
 ⇒ x + y = 30°Correct Option: Bsin(3x – 20°) 
 = cos (3y + 20°)
 ⇒ sin (3x – 20°)
 = sin(90° – 3y – 20°)
 = sin(70° – 3y)
 ⇒ 3x – 20° = 70° – 3y
 ⇒ 3x + 3y = 90°
 ⇒ 3(x + y) = 90°
 ⇒ x + y = 30°
-  The value of cot θ.tan(90° – θ) – sec(90° – θ) cosecθ + (sin² 25° + sin2 65°) + √3 (tan 5° tan 15°. tan 30°. tan75°. tan 85°) is :
- 
                        View Hint View Answer Discuss in Forum cotθ. tan (90° – θ) – sec (90° – θ). cosecθ + (sin² 25° + sin² 65°) + √3(tan5°. tan15°. tan30°. tan75°. tan85°) 
 = cotθ.cotθ – cosecθ. cosecθ + (sin² 25° + cos² 25°) + √3 (tan 5°. cot 5°. tan15°. cot15°. tan30°)
 = (cot2θ – cosec2θ) + (sin² 25° + cos² 25°) + √3 × (1 / √3)
 = – 1 + 1 + 1 = 1
 [sin(90° – θ) = cos θ; cosec² θ – cot² θ = 1; tan (90° – θ) = cotθ ; sec (90° – θ) = cosecθ]Correct Option: Acotθ. tan (90° – θ) – sec (90° – θ). cosecθ + (sin² 25° + sin² 65°) + √3(tan5°. tan15°. tan30°. tan75°. tan85°) 
 = cotθ.cotθ – cosecθ. cosecθ + (sin² 25° + cos² 25°) + √3 (tan 5°. cot 5°. tan15°. cot15°. tan30°)
 = (cot2θ – cosec2θ) + (sin² 25° + cos² 25°) + √3 × (1 / √3)
 = – 1 + 1 + 1 = 1
 [sin(90° – θ) = cos θ; cosec² θ – cot² θ = 1; tan (90° – θ) = cotθ ; sec (90° – θ) = cosecθ]
-  The value of cot 30° - cot 75° is : tan 15° - tan 60° 
- 
                        View Hint View Answer Discuss in Forum cot 30° = cot (90° – 60°) = tan 60° 
 cot 75° = cot (90° – 15°) = tan 15°∴ cot 30° - cot 75° tan 15° - tan 60° ∴ tan 60° - tan 15° = - 1 tan 15° - tan 60° 
 Correct Option: Dcot 30° = cot (90° – 60°) = tan 60° 
 cot 75° = cot (90° – 15°) = tan 15°∴ cot 30° - cot 75° tan 15° - tan 60° ∴ tan 60° - tan 15° = - 1 tan 15° - tan 60° 
 
 
	