Trigonometry


  1. If 2 (cos²θ– sin²θ) = 1, θ is a positive acute angle, then the value of θ is









  1. View Hint View Answer Discuss in Forum

    2 (cos⊃θ – sin⊃θ) = 1

    ⇒ cosec²θ - sin²θ =
    1
    2

    ⇒ 1 - 2 sin²θ =
    1
    2

    ⇒ 2 sin²θ = 1 -
    1
    2

    ⇒ 2 sin²θ =
    1
    ⇒ sin²θ =
    1
    24

    ⇒ sin²θ = ±
    1
    = sin30°
    2

    Correct Option: B

    2 (cos⊃θ – sin⊃θ) = 1

    ⇒ cosec²θ - sin²θ =
    1
    2

    ⇒ 1 - 2 sin²θ =
    1
    2

    ⇒ 2 sin²θ = 1 -
    1
    2

    ⇒ 2 sin²θ =
    1
    ⇒ sin²θ =
    1
    24

    ⇒ sin²θ = ±
    1
    = sin30°
    2


  1. If cos θ cosec 23° = 1, the value of θ is









  1. View Hint View Answer Discuss in Forum

    cosθ.cosec23° = 1

    1
    = secθ
    cos θ

    ⇒ cosec23° = cosec(90° – θ)
    ⇒ 23° = 90° – θ
    ⇒ θ = 90° – 23° = 67°

    Correct Option: D

    cosθ.cosec23° = 1

    1
    = secθ
    cos θ

    ⇒ cosec23° = cosec(90° – θ)
    ⇒ 23° = 90° – θ
    ⇒ θ = 90° – 23° = 67°



  1. If sin (3x – 20°) = cos (3y + 20°), then the value of (x + y) is









  1. View Hint View Answer Discuss in Forum

    sin(3x – 20°)
    = cos (3y + 20°)
    ⇒ sin (3x – 20°)
    = sin(90° – 3y – 20°)
    = sin(70° – 3y)
    ⇒ 3x – 20° = 70° – 3y
    ⇒ 3x + 3y = 90°
    ⇒ 3(x + y) = 90°
    ⇒ x + y = 30°

    Correct Option: B

    sin(3x – 20°)
    = cos (3y + 20°)
    ⇒ sin (3x – 20°)
    = sin(90° – 3y – 20°)
    = sin(70° – 3y)
    ⇒ 3x – 20° = 70° – 3y
    ⇒ 3x + 3y = 90°
    ⇒ 3(x + y) = 90°
    ⇒ x + y = 30°


  1. The value of cot θ.tan(90° – θ) – sec(90° – θ) cosecθ + (sin² 25° + sin2 65°) + √3 (tan 5° tan 15°. tan 30°. tan75°. tan 85°) is :









  1. View Hint View Answer Discuss in Forum

    cotθ. tan (90° – θ) – sec (90° – θ). cosecθ + (sin² 25° + sin² 65°) + √3(tan5°. tan15°. tan30°. tan75°. tan85°)
    = cotθ.cotθ – cosecθ. cosecθ + (sin² 25° + cos² 25°) + √3 (tan 5°. cot 5°. tan15°. cot15°. tan30°)
    = (cot2θ – cosec2θ) + (sin² 25° + cos² 25°) + √3 × (1 / √3)
    = – 1 + 1 + 1 = 1
    [sin(90° – θ) = cos θ; cosec² θ – cot² θ = 1; tan (90° – θ) = cotθ ; sec (90° – θ) = cosecθ]

    Correct Option: A

    cotθ. tan (90° – θ) – sec (90° – θ). cosecθ + (sin² 25° + sin² 65°) + √3(tan5°. tan15°. tan30°. tan75°. tan85°)
    = cotθ.cotθ – cosecθ. cosecθ + (sin² 25° + cos² 25°) + √3 (tan 5°. cot 5°. tan15°. cot15°. tan30°)
    = (cot2θ – cosec2θ) + (sin² 25° + cos² 25°) + √3 × (1 / √3)
    = – 1 + 1 + 1 = 1
    [sin(90° – θ) = cos θ; cosec² θ – cot² θ = 1; tan (90° – θ) = cotθ ; sec (90° – θ) = cosecθ]



  1. The value of
    cot 30° - cot 75°
    is :
    tan 15° - tan 60°









  1. View Hint View Answer Discuss in Forum

    cot 30° = cot (90° – 60°) = tan 60°
    cot 75° = cot (90° – 15°) = tan 15°

    cot 30° - cot 75°
    tan 15° - tan 60°

    tan 60° - tan 15°
    = - 1
    tan 15° - tan 60°

    Correct Option: D

    cot 30° = cot (90° – 60°) = tan 60°
    cot 75° = cot (90° – 15°) = tan 15°

    cot 30° - cot 75°
    tan 15° - tan 60°

    tan 60° - tan 15°
    = - 1
    tan 15° - tan 60°