Trigonometry
-  Find numerical value of9 + 4 cos² θ + 5 cosec² θ 1 + tan² θ 
- 
                        View Hint View Answer Discuss in Forum 9 + 4 cos² θ + 5 = 90 cosec² θ 1 + tan² θ = 9 sin² θ + 4 cos² θ + 5 sec² θ 
 = 9 sin² θ + 4 cos² θ + 5 cos² θ
 = 9 sin² θ + 9 cos² θ
 = 9 (sin² θ + cos² θ) = 9 × 1 = 9Correct Option: C9 + 4 cos² θ + 5 = 90 cosec² θ 1 + tan² θ = 9 sin² θ + 4 cos² θ + 5 sec² θ 
 = 9 sin² θ + 4 cos² θ + 5 cos² θ
 = 9 sin² θ + 9 cos² θ
 = 9 (sin² θ + cos² θ) = 9 × 1 = 9
-  If tanθ + secθ = 3, θ being acute, the value of 5 sinθ is :
- 
                        View Hint View Answer Discuss in Forum tanθ + secθ = 3 ......(i) 
 ∵ sec² θ – tan² θ = 1
 ⇒ (secθ – tanθ) (secθ + tanθ) = 1⇒ secθ – tanθ = 1 .... (ii) 3 
 On adding equations (i) and (ii),2 secθ = 3 + 1 = 10 3 3 
 On subtracting equation (ii) from (i),2tanθ = 3 - 1 3 = 9 - 1 = 8 3 3 ∴ sin θ = tan θ sec θ = 8 × 3 = 4 3 10 5 ∴ 5 sinθ = 5 × 4 = 4 5 
 Correct Option: Dtanθ + secθ = 3 ......(i) 
 ∵ sec² θ – tan² θ = 1
 ⇒ (secθ – tanθ) (secθ + tanθ) = 1⇒ secθ – tanθ = 1 .... (ii) 3 
 On adding equations (i) and (ii),2 secθ = 3 + 1 = 10 3 3 
 On subtracting equation (ii) from (i),2tanθ = 3 - 1 3 = 9 - 1 = 8 3 3 ∴ sin θ = tan θ sec θ = 8 × 3 = 4 3 10 5 ∴ 5 sinθ = 5 × 4 = 4 5 
 
-  If cosθ = p then the value of tanθ is : √p² + q² 
- 
                        View Hint View Answer Discuss in Forum cosθ = p √p² + q² 
 ∴ sinθ = √1 - cos² θ ∴ tanθ = sinθ cosθ = q × √p² + q² = q √p² + q² p p 
 Correct Option: Bcosθ = p √p² + q² 
 ∴ sinθ = √1 - cos² θ ∴ tanθ = sinθ cosθ = q × √p² + q² = q √p² + q² p p 
 
-  If θ be acute angle and tan (4θ – 50°) = cot(50° – θ), then the value of θ in degrees is :
- 
                        View Hint View Answer Discuss in Forum tan (4θ – 50°) = cot (50° – θ) 
 ⇒ tan (4θ – 50°)
 = tan (90° – (50° – θ))
 ⇒ 4θ – 50° = 90° – (50° – θ)
 ⇒ 4θ – 50° = 90° – 50° + θ
 ⇒ 4θ – 50° = 40° + θ
 ⇒ 4θ – θ = 40° + 50°⇒ 3θ = 90° ⇒ θ = 90° = 30° 3 
 Correct Option: Dtan (4θ – 50°) = cot (50° – θ) 
 ⇒ tan (4θ – 50°)
 = tan (90° – (50° – θ))
 ⇒ 4θ – 50° = 90° – (50° – θ)
 ⇒ 4θ – 50° = 90° – 50° + θ
 ⇒ 4θ – 50° = 40° + θ
 ⇒ 4θ – θ = 40° + 50°⇒ 3θ = 90° ⇒ θ = 90° = 30° 3 
 
-  If sin θ + sin²θ = 1 then cos²θ + cos4θ is equal to
- 
                        View Hint View Answer Discuss in Forum sinθ + sin²θ = 1 
 ⇒ sinθ = 1 – sin²θ = cos2θ
 ∴ cos²θ + cos4θ
 = cos²θ + (cos²θ)²
 = cos²θ + sin²θ = 1Correct Option: Bsinθ + sin²θ = 1 
 ⇒ sinθ = 1 – sin²θ = cos2θ
 ∴ cos²θ + cos4θ
 = cos²θ + (cos²θ)²
 = cos²θ + sin²θ = 1
 
	