Trigonometry


  1. If sinA + sin2A = 1, then what is the value of cos2A + cos4A ?









  1. View Hint View Answer Discuss in Forum

    sinA + sin2A
    ⇒  sinA = 1 – sin2A = cos2A
    ∴  cos2A + cos4A
    = cos2A + (cos2A)2
    = cos2A + sin2A

    Correct Option: A

    sinA + sin2A
    ⇒  sinA = 1 – sin2A = cos2A
    ∴  cos2A + cos4A
    = cos2A + (cos2A)2
    = cos2A + sin2A


  1. If sinA + sin2A = 1, then what is the value of cos2A + cos4A ?









  1. View Hint View Answer Discuss in Forum

    sinA + sin2A
    ⇒  sinA = 1 – sin2A = cos2A
    ∴  cos2A + cos4A
    = cos2A + (cos2A)2
    = cos2A + sin2A

    Correct Option: A

    sinA + sin2A
    ⇒  sinA = 1 – sin2A = cos2A
    ∴  cos2A + cos4A
    = cos2A + (cos2A)2
    = cos2A + sin2A



  1. If sinC – sinD = x, then the value of x is









  1. View Hint View Answer Discuss in Forum

    sinC – sinD = 2 cos
    C + D
    . sin
    C – D
    = x
    22

    Illustration
    sin (A + B)
    = sinA . cosB + cosA . sinB
    sin (A – B)
    = sinA . cosB – cosA . sinB
    ∴  sin (A + B) – sin (A – B)
    = 2 cosA . sinB
    Let, A + B = C ; A – B = D
    ∴  On adding,
    A =
    C + D
    2

    On subtracting,
    B =
    C – D
    2

    ∴  sinC – sinD = 2 cos
    C + D
    .
    C − D
    22

    Correct Option: C

    sinC – sinD = 2 cos
    C + D
    . sin
    C – D
    = x
    22

    Illustration
    sin (A + B)
    = sinA . cosB + cosA . sinB
    sin (A – B)
    = sinA . cosB – cosA . sinB
    ∴  sin (A + B) – sin (A – B)
    = 2 cosA . sinB
    Let, A + B = C ; A – B = D
    ∴  On adding,
    A =
    C + D
    2

    On subtracting,
    B =
    C – D
    2

    ∴  sinC – sinD = 2 cos
    C + D
    .
    C − D
    22


  1. If  
    sinθ + cosθ
    = 3 then the value of sin4θ − cos4θ is
    sinθ − cosθ









  1. View Hint View Answer Discuss in Forum

    sinθ + cosθ
    = 3
    sinθ − cosθ

    ⇒  3 sinθ – 3 cosθ = sinθ + cosθ
    ⇒  3 sinθ – sinθ = 3 cosθ + cosθ
    ⇒  2 sinθ = 4 cosθ
    ⇒  sinθ = 2 cosθ
    ⇒  tanθ = 2
    ∴  sec2θ = 1 + tan2θ
    = 1 + 4 = 5
    ∴  cos2θ =
    1
    5

    ∴  sin2θ = 1 – cos2θ
    = 1 −
    1
    5

    =
    4
    5

    ∴  sin4θ − cos4θ
    = (sin2θ + cos2θ)(sin2θ – cos2θ)
    = sin2θ – cos2θ
    =
    4
    1
    =
    3
    555

    Correct Option: D

    sinθ + cosθ
    = 3
    sinθ − cosθ

    ⇒  3 sinθ – 3 cosθ = sinθ + cosθ
    ⇒  3 sinθ – sinθ = 3 cosθ + cosθ
    ⇒  2 sinθ = 4 cosθ
    ⇒  sinθ = 2 cosθ
    ⇒  tanθ = 2
    ∴  sec2θ = 1 + tan2θ
    = 1 + 4 = 5
    ∴  cos2θ =
    1
    5

    ∴  sin2θ = 1 – cos2θ
    = 1 −
    1
    5

    =
    4
    5

    ∴  sin4θ − cos4θ
    = (sin2θ + cos2θ)(sin2θ – cos2θ)
    = sin2θ – cos2θ
    =
    4
    1
    =
    3
    555



  1. If sinθ + cosθ = 1, then sinθ. cosθ. is equal to









  1. View Hint View Answer Discuss in Forum

    sinθ + cosθ = 1
    On squaring,
    (sinθ + cosθ) = 1
    ⇒  sin2θ + cos2θ + 2 sinθ. cosθ = 1
    ⇒  1 + 2 sinθ . cosθ = 1
    ⇒  2 sinθ . cosθ = 1 – 1 = 0
    ⇒  sinθ. cosθ = 0

    Correct Option: A

    sinθ + cosθ = 1
    On squaring,
    (sinθ + cosθ) = 1
    ⇒  sin2θ + cos2θ + 2 sinθ. cosθ = 1
    ⇒  1 + 2 sinθ . cosθ = 1
    ⇒  2 sinθ . cosθ = 1 – 1 = 0
    ⇒  sinθ. cosθ = 0