Trigonometry
-  If sinA + sin2A = 1, then what is the value of cos2A + cos4A ?
- 
                        View Hint View Answer Discuss in Forum sinA + sin2A 
 ⇒ sinA = 1 – sin2A = cos2A
 ∴ cos2A + cos4A
 = cos2A + (cos2A)2
 = cos2A + sin2ACorrect Option: AsinA + sin2A 
 ⇒ sinA = 1 – sin2A = cos2A
 ∴ cos2A + cos4A
 = cos2A + (cos2A)2
 = cos2A + sin2A
-  If sinA + sin2A = 1, then what is the value of cos2A + cos4A ?
- 
                        View Hint View Answer Discuss in Forum sinA + sin2A 
 ⇒ sinA = 1 – sin2A = cos2A
 ∴ cos2A + cos4A
 = cos2A + (cos2A)2
 = cos2A + sin2ACorrect Option: AsinA + sin2A 
 ⇒ sinA = 1 – sin2A = cos2A
 ∴ cos2A + cos4A
 = cos2A + (cos2A)2
 = cos2A + sin2A
-  If sinC – sinD = x, then the value of x is
- 
                        View Hint View Answer Discuss in Forum sinC – sinD = 2 cos C + D . sin C – D = x 2 2 
 Illustration
 sin (A + B)
 = sinA . cosB + cosA . sinB
 sin (A – B)
 = sinA . cosB – cosA . sinB
 ∴ sin (A + B) – sin (A – B)
 = 2 cosA . sinB
 Let, A + B = C ; A – B = D
 ∴ On adding,A = C + D 2 
 On subtracting,B = C – D 2 ∴ sinC – sinD = 2 cos C + D . C − D 2 2 Correct Option: CsinC – sinD = 2 cos C + D . sin C – D = x 2 2 
 Illustration
 sin (A + B)
 = sinA . cosB + cosA . sinB
 sin (A – B)
 = sinA . cosB – cosA . sinB
 ∴ sin (A + B) – sin (A – B)
 = 2 cosA . sinB
 Let, A + B = C ; A – B = D
 ∴ On adding,A = C + D 2 
 On subtracting,B = C – D 2 ∴ sinC – sinD = 2 cos C + D . C − D 2 2 
-  If sinθ + cosθ = 3 then the value of sin4θ − cos4θ is sinθ − cosθ 
- 
                        View Hint View Answer Discuss in Forum sinθ + cosθ = 3 sinθ − cosθ 
 ⇒ 3 sinθ – 3 cosθ = sinθ + cosθ
 ⇒ 3 sinθ – sinθ = 3 cosθ + cosθ
 ⇒ 2 sinθ = 4 cosθ
 ⇒ sinθ = 2 cosθ
 ⇒ tanθ = 2
 ∴ sec2θ = 1 + tan2θ
 = 1 + 4 = 5∴ cos2θ = 1 5 
 ∴ sin2θ = 1 – cos2θ= 1 − 1 5 = 4 5 
 ∴ sin4θ − cos4θ
 = (sin2θ + cos2θ)(sin2θ – cos2θ)
 = sin2θ – cos2θ= 4 − 1 = 3 5 5 5 Correct Option: Dsinθ + cosθ = 3 sinθ − cosθ 
 ⇒ 3 sinθ – 3 cosθ = sinθ + cosθ
 ⇒ 3 sinθ – sinθ = 3 cosθ + cosθ
 ⇒ 2 sinθ = 4 cosθ
 ⇒ sinθ = 2 cosθ
 ⇒ tanθ = 2
 ∴ sec2θ = 1 + tan2θ
 = 1 + 4 = 5∴ cos2θ = 1 5 
 ∴ sin2θ = 1 – cos2θ= 1 − 1 5 = 4 5 
 ∴ sin4θ − cos4θ
 = (sin2θ + cos2θ)(sin2θ – cos2θ)
 = sin2θ – cos2θ= 4 − 1 = 3 5 5 5 
-  If sinθ + cosθ = 1, then sinθ. cosθ. is equal to
- 
                        View Hint View Answer Discuss in Forum sinθ + cosθ = 1 
 On squaring,
 (sinθ + cosθ) = 1
 ⇒ sin2θ + cos2θ + 2 sinθ. cosθ = 1
 ⇒ 1 + 2 sinθ . cosθ = 1
 ⇒ 2 sinθ . cosθ = 1 – 1 = 0
 ⇒ sinθ. cosθ = 0Correct Option: Asinθ + cosθ = 1 
 On squaring,
 (sinθ + cosθ) = 1
 ⇒ sin2θ + cos2θ + 2 sinθ. cosθ = 1
 ⇒ 1 + 2 sinθ . cosθ = 1
 ⇒ 2 sinθ . cosθ = 1 – 1 = 0
 ⇒ sinθ. cosθ = 0
 
	