Trigonometry
- If sinA + sin2A = 1, then what is the value of cos2A + cos4A ?
-
View Hint View Answer Discuss in Forum
sinA + sin2A
⇒ sinA = 1 – sin2A = cos2A
∴ cos2A + cos4A
= cos2A + (cos2A)2
= cos2A + sin2ACorrect Option: A
sinA + sin2A
⇒ sinA = 1 – sin2A = cos2A
∴ cos2A + cos4A
= cos2A + (cos2A)2
= cos2A + sin2A
- If sinA + sin2A = 1, then what is the value of cos2A + cos4A ?
-
View Hint View Answer Discuss in Forum
sinA + sin2A
⇒ sinA = 1 – sin2A = cos2A
∴ cos2A + cos4A
= cos2A + (cos2A)2
= cos2A + sin2ACorrect Option: A
sinA + sin2A
⇒ sinA = 1 – sin2A = cos2A
∴ cos2A + cos4A
= cos2A + (cos2A)2
= cos2A + sin2A
- If sinC – sinD = x, then the value of x is
-
View Hint View Answer Discuss in Forum
sinC – sinD = 2 cos C + D . sin C – D = x 2 2
Illustration
sin (A + B)
= sinA . cosB + cosA . sinB
sin (A – B)
= sinA . cosB – cosA . sinB
∴ sin (A + B) – sin (A – B)
= 2 cosA . sinB
Let, A + B = C ; A – B = D
∴ On adding,A = C + D 2
On subtracting,B = C – D 2 ∴ sinC – sinD = 2 cos C + D . C − D 2 2 Correct Option: C
sinC – sinD = 2 cos C + D . sin C – D = x 2 2
Illustration
sin (A + B)
= sinA . cosB + cosA . sinB
sin (A – B)
= sinA . cosB – cosA . sinB
∴ sin (A + B) – sin (A – B)
= 2 cosA . sinB
Let, A + B = C ; A – B = D
∴ On adding,A = C + D 2
On subtracting,B = C – D 2 ∴ sinC – sinD = 2 cos C + D . C − D 2 2
-
If sinθ + cosθ = 3 then the value of sin4θ − cos4θ is sinθ − cosθ
-
View Hint View Answer Discuss in Forum
sinθ + cosθ = 3 sinθ − cosθ
⇒ 3 sinθ – 3 cosθ = sinθ + cosθ
⇒ 3 sinθ – sinθ = 3 cosθ + cosθ
⇒ 2 sinθ = 4 cosθ
⇒ sinθ = 2 cosθ
⇒ tanθ = 2
∴ sec2θ = 1 + tan2θ
= 1 + 4 = 5∴ cos2θ = 1 5
∴ sin2θ = 1 – cos2θ= 1 − 1 5 = 4 5
∴ sin4θ − cos4θ
= (sin2θ + cos2θ)(sin2θ – cos2θ)
= sin2θ – cos2θ= 4 − 1 = 3 5 5 5 Correct Option: D
sinθ + cosθ = 3 sinθ − cosθ
⇒ 3 sinθ – 3 cosθ = sinθ + cosθ
⇒ 3 sinθ – sinθ = 3 cosθ + cosθ
⇒ 2 sinθ = 4 cosθ
⇒ sinθ = 2 cosθ
⇒ tanθ = 2
∴ sec2θ = 1 + tan2θ
= 1 + 4 = 5∴ cos2θ = 1 5
∴ sin2θ = 1 – cos2θ= 1 − 1 5 = 4 5
∴ sin4θ − cos4θ
= (sin2θ + cos2θ)(sin2θ – cos2θ)
= sin2θ – cos2θ= 4 − 1 = 3 5 5 5
- If sinθ + cosθ = 1, then sinθ. cosθ. is equal to
-
View Hint View Answer Discuss in Forum
sinθ + cosθ = 1
On squaring,
(sinθ + cosθ) = 1
⇒ sin2θ + cos2θ + 2 sinθ. cosθ = 1
⇒ 1 + 2 sinθ . cosθ = 1
⇒ 2 sinθ . cosθ = 1 – 1 = 0
⇒ sinθ. cosθ = 0Correct Option: A
sinθ + cosθ = 1
On squaring,
(sinθ + cosθ) = 1
⇒ sin2θ + cos2θ + 2 sinθ. cosθ = 1
⇒ 1 + 2 sinθ . cosθ = 1
⇒ 2 sinθ . cosθ = 1 – 1 = 0
⇒ sinθ. cosθ = 0