Trigonometry


  1. The angle of elevation of a ladder leaning against a wall is 60° and the foot of the ladder is 4.6 metre away from the wall. The length of the ladder is









  1. View Hint View Answer Discuss in Forum


    AB = Height of the wall
    AC = Length of ladder = h metre
    BC = b = 4.6 metre
    ∠ACB = 60°

    ∴ cos 60° =
    BC
    AC

    1
    =
    4.6
    2h

    ⇒ h = (2 × 4.6) metre
    = 9.2 metre

    Correct Option: C


    AB = Height of the wall
    AC = Length of ladder = h metre
    BC = b = 4.6 metre
    ∠ACB = 60°

    ∴ cos 60° =
    BC
    AC

    1
    =
    4.6
    2h

    ⇒ h = (2 × 4.6) metre
    = 9.2 metre


  1. A person observes that the angle of elevation at the top of a pole of height 5 metre is 30°. Then the distance of the person from the pole is :









  1. View Hint View Answer Discuss in Forum


    AB = pole = 5 metre
    ∠ACB = 30°, BC = ?
    In ∆ABC,

    tan 30° =
    AB

    1
    =
    5

    BC3BC

    ⇒ BC = 5 √3 metre

    Correct Option: A


    AB = pole = 5 metre
    ∠ACB = 30°, BC = ?
    In ∆ABC,

    tan 30° =
    AB

    1
    =
    5

    BC3BC

    ⇒ BC = 5 √3 metre



  1. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angle of elevation of the bottom of the flag staff is a and that of the top of the flag staff is β. Then the height of the tower is









  1. View Hint View Answer Discuss in Forum


    Let height of tower = BC = y metre
    AB = height of flag-staff = h metre
    ∠BDC = a; ∠ADC = b
    Let, CD = x metre
    In ∆BCD,

    tan α =
    BC
    CD

    ⇒ tan α =
    y
    ..... (i)
    x

    In ∆ACD,
    tan β =
    AC
    CD

    ⇒ tan β =
    h + y
    x

    ⇒ x =
    h + y
    ..... (ii)
    tanβ

    y
    =
    h + y
    tanαtanβ

    ⇒ y tan β = h tanα + y tanα
    ⇒ y tanβ – y tanα = h tanα
    ⇒ y (tanβ – tanα) = h tanα
    ⇒ y =
    h tan α
    tanβ - tanα

    Correct Option: B


    Let height of tower = BC = y metre
    AB = height of flag-staff = h metre
    ∠BDC = a; ∠ADC = b
    Let, CD = x metre
    In ∆BCD,

    tan α =
    BC
    CD

    ⇒ tan α =
    y
    ..... (i)
    x

    In ∆ACD,
    tan β =
    AC
    CD

    ⇒ tan β =
    h + y
    x

    ⇒ x =
    h + y
    ..... (ii)
    tanβ

    y
    =
    h + y
    tanαtanβ

    ⇒ y tan β = h tanα + y tanα
    ⇒ y tanβ – y tanα = h tanα
    ⇒ y (tanβ – tanα) = h tanα
    ⇒ y =
    h tan α
    tanβ - tanα


  1. The angle of elevation of an aeroplane from a point on the ground is 45°. After flying for 15 seconds, the elevation changes to 30°. If the aeroplane is flying at a height of 2500 metres, then the speed of the aeroplane in km/ hr. is









  1. View Hint View Answer Discuss in Forum


    Let A and C be the positions of plane.
    AB = CD = 2500 metre
    BD = AC = x metre (let)
    ∠AOB = 60° ; ∠COD = 30°
    In ∆OAB,
    ⇒ OB = 2500 metre
    In ∆OCD,

    tan30° =
    CD
    OD

    1
    3

    =
    2500
    2500 + x

    ⇒ 2500 + x = 2500√3
    ⇒ x
    = 2500 √3 – 2500
    = 2500 (√3 - 1) metre
    Time = 15 seconds
    =
    15
    hour =
    1
    hour
    60 × 60240

    ∴ Speed of plane =
    2500 (√3 - 1)
    × 240 kmph
    1000

    = 600 (√3 - 1) kmph.

    Correct Option: D


    Let A and C be the positions of plane.
    AB = CD = 2500 metre
    BD = AC = x metre (let)
    ∠AOB = 60° ; ∠COD = 30°
    In ∆OAB,
    ⇒ OB = 2500 metre
    In ∆OCD,

    tan30° =
    CD
    OD

    1
    3

    =
    2500
    2500 + x

    ⇒ 2500 + x = 2500√3
    ⇒ x
    = 2500 √3 – 2500
    = 2500 (√3 - 1) metre
    Time = 15 seconds
    =
    15
    hour =
    1
    hour
    60 × 60240

    ∴ Speed of plane =
    2500 (√3 - 1)
    × 240 kmph
    1000

    = 600 (√3 - 1) kmph.



  1. The thread of a kite makes angle 60° with the horizontal plane. If the length of the thread be 80 m, then the vertical height of the kite will be









  1. View Hint View Answer Discuss in Forum


    AB = Length of thread
    = h metre
    = 80 metre
    ∠BAC = 60°
    BC = Vertical height of kite
    In ∠ABC,

    sin 60° =
    BC
    AB

    3
    =
    h
    280

    ⇒ h = 80 ×
    3
    = 40√3 metre
    2

    Correct Option: D


    AB = Length of thread
    = h metre
    = 80 metre
    ∠BAC = 60°
    BC = Vertical height of kite
    In ∠ABC,

    sin 60° =
    BC
    AB

    3
    =
    h
    280

    ⇒ h = 80 ×
    3
    = 40√3 metre
    2