Trigonometry
-
If tan α = 2, then the value of sinα is sin3α + cos3α
-
View Hint View Answer Discuss in Forum
tanα = 2
∴ sec2α = 1 + tan2α = 1 + 22
= 1 + 4 = 5Expression = sinα sin3α + cos3α = sinα cos3α sin3α + cos3α cos3α cos3α = sinα . 1 . 1 cosα cos2α (tan3α + 1) = tanα.sec2α. 1 (tan3α + 1) = 2 × 5 × 1 (23 + 1) = 10 9 Correct Option: C
tanα = 2
∴ sec2α = 1 + tan2α = 1 + 22
= 1 + 4 = 5Expression = sinα sin3α + cos3α = sinα cos3α sin3α + cos3α cos3α cos3α = sinα . 1 . 1 cosα cos2α (tan3α + 1) = tanα.sec2α. 1 (tan3α + 1) = 2 × 5 × 1 (23 + 1) = 10 9
- If √2 tan2θ = √6 and 0° < θ < 45°, then the value of sinθ + √3cosθ – 2tan2θ is
-
View Hint View Answer Discuss in Forum
√2 tan2θ = √6
⇒ tan2θ = √6 = √3 √2
⇒ tan2θ = tan 60°
⇒ 2θ = 60° ⇒ θ = 30°
∴ sinθ + √3 cosθ – 2 tan2θ
= sin 30° + √3 cos 30° – 2 tan230°= 1 + √3 × √3 – 2 1 2 2 2 √3 = 1 + 3 − 2 2 2 3 = 3 + 9 − 4 = 8 = 4 6 6 3 Correct Option: B
√2 tan2θ = √6
⇒ tan2θ = √6 = √3 √2
⇒ tan2θ = tan 60°
⇒ 2θ = 60° ⇒ θ = 30°
∴ sinθ + √3 cosθ – 2 tan2θ
= sin 30° + √3 cos 30° – 2 tan230°= 1 + √3 × √3 – 2 1 2 2 2 √3 = 1 + 3 − 2 2 2 3 = 3 + 9 − 4 = 8 = 4 6 6 3
- Find the value of
sin 27° 2 + cos 63° 2 cos 63° sin 27°
-
View Hint View Answer Discuss in Forum
sin 27° = sin (90° – 63°) = cos 63°
[∵ sin (90° – θ) = cosθ]∴ sin 27° 2 + cos 63° 2 cos 63° sin 27° = sin 27° 2 + sin 27° 2 sin 27° sin 27°
= 1 + 1 = 2Correct Option: B
sin 27° = sin (90° – 63°) = cos 63°
[∵ sin (90° – θ) = cosθ]∴ sin 27° 2 + cos 63° 2 cos 63° sin 27° = sin 27° 2 + sin 27° 2 sin 27° sin 27°
= 1 + 1 = 2
- The value of tan80° tan10° + sin2 70° + sin270° + sin220° is
-
View Hint View Answer Discuss in Forum
tan 80° . tan 10° + sin270° + sin220°
= tan (90° – 10°) . tan 10° + sin2(90° – 20°) + sin220°
= cot 10° . tan 10° + cos220° + sin220°
= 1 + 1 = 2
[∵ sin (90° – θ) = cosθ; tan (90° – θ) = cotθ; tanθ . cotθ = 1]Correct Option: C
tan 80° . tan 10° + sin270° + sin220°
= tan (90° – 10°) . tan 10° + sin2(90° – 20°) + sin220°
= cot 10° . tan 10° + cos220° + sin220°
= 1 + 1 = 2
[∵ sin (90° – θ) = cosθ; tan (90° – θ) = cotθ; tanθ . cotθ = 1]