Trigonometry
-  If tan α = 2, then the value of sinα is sin3α + cos3α 
- 
                        View Hint View Answer Discuss in Forum tanα = 2 
 ∴ sec2α = 1 + tan2α = 1 + 22
 = 1 + 4 = 5Expression = sinα sin3α + cos3α = sinα cos3α  sin3α + cos3α  cos3α cos3α = sinα . 1 . 1 cosα cos2α (tan3α + 1) = tanα.sec2α. 1 (tan3α + 1) = 2 × 5 × 1 (23 + 1) = 10 9 Correct Option: Ctanα = 2 
 ∴ sec2α = 1 + tan2α = 1 + 22
 = 1 + 4 = 5Expression = sinα sin3α + cos3α = sinα cos3α  sin3α + cos3α  cos3α cos3α = sinα . 1 . 1 cosα cos2α (tan3α + 1) = tanα.sec2α. 1 (tan3α + 1) = 2 × 5 × 1 (23 + 1) = 10 9 
-  If √2 tan2θ = √6 and 0° < θ < 45°, then the value of sinθ + √3cosθ – 2tan2θ is
- 
                        View Hint View Answer Discuss in Forum √2 tan2θ = √6 ⇒ tan2θ = √6 = √3 √2 
 ⇒ tan2θ = tan 60°
 ⇒ 2θ = 60° ⇒ θ = 30°
 ∴ sinθ + √3 cosθ – 2 tan2θ
 = sin 30° + √3 cos 30° – 2 tan230°= 1 + √3 × √3 – 2  1  2 2 2 √3 = 1 + 3 − 2 2 2 3 = 3 + 9 − 4 = 8 = 4 6 6 3 Correct Option: B√2 tan2θ = √6 ⇒ tan2θ = √6 = √3 √2 
 ⇒ tan2θ = tan 60°
 ⇒ 2θ = 60° ⇒ θ = 30°
 ∴ sinθ + √3 cosθ – 2 tan2θ
 = sin 30° + √3 cos 30° – 2 tan230°= 1 + √3 × √3 – 2  1  2 2 2 √3 = 1 + 3 − 2 2 2 3 = 3 + 9 − 4 = 8 = 4 6 6 3 
-  Find the value of sin 27°  2 +  cos 63°  2 cos 63° sin 27° 
- 
                        View Hint View Answer Discuss in Forum sin 27° = sin (90° – 63°) = cos 63° 
 [∵ sin (90° – θ) = cosθ]∴  sin 27°  2 +  cos 63°  2 cos 63° sin 27° =  sin 27°  2 +  sin 27°  2 sin 27° sin 27° 
 = 1 + 1 = 2Correct Option: Bsin 27° = sin (90° – 63°) = cos 63° 
 [∵ sin (90° – θ) = cosθ]∴  sin 27°  2 +  cos 63°  2 cos 63° sin 27° =  sin 27°  2 +  sin 27°  2 sin 27° sin 27° 
 = 1 + 1 = 2
-  The value of tan80° tan10° + sin2 70° + sin270° + sin220° is
- 
                        View Hint View Answer Discuss in Forum tan 80° . tan 10° + sin270° + sin220° 
 = tan (90° – 10°) . tan 10° + sin2(90° – 20°) + sin220°
 = cot 10° . tan 10° + cos220° + sin220°
 = 1 + 1 = 2
 [∵ sin (90° – θ) = cosθ; tan (90° – θ) = cotθ; tanθ . cotθ = 1]Correct Option: Ctan 80° . tan 10° + sin270° + sin220° 
 = tan (90° – 10°) . tan 10° + sin2(90° – 20°) + sin220°
 = cot 10° . tan 10° + cos220° + sin220°
 = 1 + 1 = 2
 [∵ sin (90° – θ) = cosθ; tan (90° – θ) = cotθ; tanθ . cotθ = 1]
 
	