Trigonometry
-  If a 48 m tall building has a shadow of 48 √3 m., then the angle of elevation of the sun is
- 
                        View Hint View Answer Discuss in Forum  
 AB = Building = 48 metre
 BC = Shadow = 48√3 metre
 ∠ACB = θ = ?
 AB BC∴ tan θ = AB = 48 BC 48√3 ⇒ tanθ = 1 = tan 30° √3 
 θ = 30°Correct Option: D 
 AB = Building = 48 metre
 BC = Shadow = 48√3 metre
 ∠ACB = θ = ?
 AB BC∴ tan θ = AB = 48 BC 48√3 ⇒ tanθ = 1 = tan 30° √3 
 θ = 30°
-  Two towers A and B have lengths 45 m and 15 m respectively. The angle of elevation from the bottom of the tower B to the top of the tower A is 60°. If the angle of elevation from the bottom of tower A to the top of the tower B is θ then value of sin θ is :
- 
                        View Hint View Answer Discuss in Forum  
 PQ = Tower A = 45 metre
 RS = Tower B = 15 metre,
 QS = x metre (let)
 ∠PSQ = 60° ; ∠RQS = θ
 From ∆PQS,tanθ 60° = PQ QS ⇒ √3 = 45 ⇒ √3x = 45 QS ⇒ x = 45 = 15√3 metre 5√3 
 From ∆RSQ,tanθ = RS = 15 QS 15√3 ⇒ tanθ = 1 √3 
 ⇒ tanθ = tan 30°
 ⇒ θ = 30°
 ∴ sinθ = sin 30° = 1/2Correct Option: B 
 PQ = Tower A = 45 metre
 RS = Tower B = 15 metre,
 QS = x metre (let)
 ∠PSQ = 60° ; ∠RQS = θ
 From ∆PQS,tanθ 60° = PQ QS ⇒ √3 = 45 ⇒ √3x = 45 QS ⇒ x = 45 = 15√3 metre 5√3 
 From ∆RSQ,tanθ = RS = 15 QS 15√3 ⇒ tanθ = 1 √3 
 ⇒ tanθ = tan 30°
 ⇒ θ = 30°
 ∴ sinθ = sin 30° = 1/2
-  A kite is flying at the height of 75 m from the ground. The string makes an angle q (where cotq = 8/15 ) with the level ground. Assuming that there is no slack in the string the length of the string is equal to :
- 
                        View Hint View Answer Discuss in Forum  
 A = Position of kite
 AC = length of string
 AB = 75 metrecot θ = 8 15 
 ∴ cosecθ = √1 + cot²θ= √ + 1  8  ² = √ + 1 64 15 225 = √ 225 + 64 = √ + 1 289 225 225 = 17 15 ∴ sinθ = 17 15 
 From ∆ABCsinθ = AB AC ⇒ 15 = 75 17 AC 
 ⇒ AC × 15 = 17 × 15⇒ AC = 17 × 75 = 85 metre 15 Correct Option: A 
 A = Position of kite
 AC = length of string
 AB = 75 metrecot θ = 8 15 
 ∴ cosecθ = √1 + cot²θ= √ + 1  8  ² = √ + 1 64 15 225 = √ 225 + 64 = √ + 1 289 225 225 = 17 15 ∴ sinθ = 17 15 
 From ∆ABCsinθ = AB AC ⇒ 15 = 75 17 AC 
 ⇒ AC × 15 = 17 × 15⇒ AC = 17 × 75 = 85 metre 15 
-  The angle of elevation of a tower from a distance of 100 metre from its foot is 30°. Then the height of the tower is
- 
                        View Hint View Answer Discuss in Forum  
 AB = Tower = h metre
 From ∆ABC,tan 30° = AB BC ⇒ 1 = h √3 100 >⇒ h = 100 metre √3 Correct Option: D 
 AB = Tower = h metre
 From ∆ABC,tan 30° = AB BC ⇒ 1 = h √3 100 >⇒ h = 100 metre √3 
-  A 10 metre long ladder is placed against a wall. It is inclined at an angle of 30° to the ground. The distance (in m) of the foot of the ladder from the wall is (Given √3 = 1.732)
- 
                        View Hint View Answer Discuss in Forum  
 AC = ladder = 10 metre
 BC = ?
 ∠ABC = θ = 30°
 From ∆ABC,cos θ = BC AC ⇒ cos 30° = BC 10 ⇒ √3 = BC 2 10 ⇒ BC = 10√3 = 5√3 2 
 = 5 × 1.732 = 8.660 metreCorrect Option: D 
 AC = ladder = 10 metre
 BC = ?
 ∠ABC = θ = 30°
 From ∆ABC,cos θ = BC AC ⇒ cos 30° = BC 10 ⇒ √3 = BC 2 10 ⇒ BC = 10√3 = 5√3 2 
 = 5 × 1.732 = 8.660 metre
 
	