Trigonometry


  1. If sin (A – B) = sin A cos B – cosA sinB, then sin 15° will be









  1. View Hint View Answer Discuss in Forum

    Let, A = 45°
    B = 30°
    sin (A – B)
    = sin A. cos B – cos A. sin B
    ⇒ sin (45° – 30°)
    = sin 45°. cos 30° – cos 45°. sin 30°
    ⇒ sin 15°

    =
    1
    ×
    3
    -
    1
    ×
    1

    2222

    =
    3
    -
    1
    =
    3 - 1

    2√22√22√2

    Correct Option: D

    Let, A = 45°
    B = 30°
    sin (A – B)
    = sin A. cos B – cos A. sin B
    ⇒ sin (45° – 30°)
    = sin 45°. cos 30° – cos 45°. sin 30°
    ⇒ sin 15°

    =
    1
    ×
    3
    -
    1
    ×
    1

    2222

    =
    3
    -
    1
    =
    3 - 1

    2√22√22√2


  1. If sec x + cos x = 2, then the value of sec16 x + cos16 x will be









  1. View Hint View Answer Discuss in Forum

    sec x + cos x = 2

    1
    + cosx = 2
    cos x

    1 + cos²x
    = 2
    cos x

    ⇒ cos²x + 1 = 2 cosx
    ⇒ cos²x – 2 cosx + 1 = 0
    ⇒ (cosx – 1)² = 0
    ⇒ cos –1 = 0
    ⇒ cos = 1
    ∴ secx = 1
    ∴ sec16x + cos16x = 1 + 1 = 2

    Correct Option: B

    sec x + cos x = 2

    1
    + cosx = 2
    cos x

    1 + cos²x
    = 2
    cos x

    ⇒ cos²x + 1 = 2 cosx
    ⇒ cos²x – 2 cosx + 1 = 0
    ⇒ (cosx – 1)² = 0
    ⇒ cos –1 = 0
    ⇒ cos = 1
    ∴ secx = 1
    ∴ sec16x + cos16x = 1 + 1 = 2



  1. If sin4θ + cos4θ = 2 sin2θ cos2θ, θ is an acute angle, then the value of tan θ is









  1. View Hint View Answer Discuss in Forum

    sin4 θ + cos4 θ = 2 sin² θ. cos²θ
    ⇒ sin4 θ + cos4 θ
    – 2 sin² θ. cos² θ = 0
    ⇒ (sin² θ – cos² θ)² = 0
    ⇒ sin² θ – cos² θ = 0
    ⇒ sin² θ = cos² θ
    = tan² θ = 1
    ⇒ tan θ = + 1
    ∵ θ is acute angle.

    Correct Option: A

    sin4 θ + cos4 θ = 2 sin² θ. cos²θ
    ⇒ sin4 θ + cos4 θ
    – 2 sin² θ. cos² θ = 0
    ⇒ (sin² θ – cos² θ)² = 0
    ⇒ sin² θ – cos² θ = 0
    ⇒ sin² θ = cos² θ
    = tan² θ = 1
    ⇒ tan θ = + 1
    ∵ θ is acute angle.


  1. The maximum value of sin2θ + cos2θ is









  1. View Hint View Answer Discuss in Forum

    Expression
    = sin4θ + cos4θ
    = (sin²θ)² + (cos²θ)²
    = (sin²θ + cos²θ)² – 2 sin²θ.cos²θ.
    = 1 – 2 sin²θ. cos²θ.

    = 1 -
    4sin²θ . cos²θ
    2

    [∵ sin²θ = 2 sinθ . cosθ]
    = 1 -
    sin²2θ
    2

    = 1 -
    1 - cos4θ
    4

    [∵ 1 – cos²θ = 2cos²θ]
    = 1 -
    1
    +
    cos4θ
    44

    = 1 -
    1
    +
    1
    = 1
    44

    (cos 4θ ≤1)
    OR
    The value of sin4 θ + cos4 θ will be
    maximum if θ = 0°
    ∴ Required value = (sin0)4 + (cos0)4 = 0 + 1 = 1

    Correct Option: B

    Expression
    = sin4θ + cos4θ
    = (sin²θ)² + (cos²θ)²
    = (sin²θ + cos²θ)² – 2 sin²θ.cos²θ.
    = 1 – 2 sin²θ. cos²θ.

    = 1 -
    4sin²θ . cos²θ
    2

    [∵ sin²θ = 2 sinθ . cosθ]
    = 1 -
    sin²2θ
    2

    = 1 -
    1 - cos4θ
    4

    [∵ 1 – cos²θ = 2cos²θ]
    = 1 -
    1
    +
    cos4θ
    44

    = 1 -
    1
    +
    1
    = 1
    44

    (cos 4θ ≤1)
    OR
    The value of sin4 θ + cos4 θ will be
    maximum if θ = 0°
    ∴ Required value = (sin0)4 + (cos0)4 = 0 + 1 = 1



  1. Find the value of tan 4° tan 43° tan 47° tan 86°









  1. View Hint View Answer Discuss in Forum

    tan 86° = cot (90° – 86°) = cot 4°.
    tan 47° = cot (90° – 47°) = cot 43°
    7there4; (tan 4°. tan 86°) (tan 43°.tan 47°)
    = (tan 4° : cot 4°) (tan 43°.cot 43°)
    = 1 (∵ tanθ . cotθ = 1)

    Correct Option: B

    tan 86° = cot (90° – 86°) = cot 4°.
    tan 47° = cot (90° – 47°) = cot 43°
    7there4; (tan 4°. tan 86°) (tan 43°.tan 47°)
    = (tan 4° : cot 4°) (tan 43°.cot 43°)
    = 1 (∵ tanθ . cotθ = 1)