Trigonometry
-  If sin (A – B) = sin A cos B – cosA sinB, then sin 15° will be
- 
                        View Hint View Answer Discuss in Forum Let, A = 45° 
 B = 30°
 sin (A – B)
 = sin A. cos B – cos A. sin B
 ⇒ sin (45° – 30°)
 = sin 45°. cos 30° – cos 45°. sin 30°
 ⇒ sin 15°= 1 × √3 - 1 × 1 √2 2 √2 2 = √3 - 1 = √3 - 1 2√2 2√2 2√2 
 Correct Option: DLet, A = 45° 
 B = 30°
 sin (A – B)
 = sin A. cos B – cos A. sin B
 ⇒ sin (45° – 30°)
 = sin 45°. cos 30° – cos 45°. sin 30°
 ⇒ sin 15°= 1 × √3 - 1 × 1 √2 2 √2 2 = √3 - 1 = √3 - 1 2√2 2√2 2√2 
 
-  If sec x + cos x = 2, then the value of sec16 x + cos16 x will be
- 
                        View Hint View Answer Discuss in Forum sec x + cos x = 2 ⇒ 1 + cosx = 2 cos x ⇒ 1 + cos²x = 2 cos x 
 ⇒ cos²x + 1 = 2 cosx
 ⇒ cos²x – 2 cosx + 1 = 0
 ⇒ (cosx – 1)² = 0
 ⇒ cos –1 = 0
 ⇒ cos = 1
 ∴ secx = 1
 ∴ sec16x + cos16x = 1 + 1 = 2Correct Option: Bsec x + cos x = 2 ⇒ 1 + cosx = 2 cos x ⇒ 1 + cos²x = 2 cos x 
 ⇒ cos²x + 1 = 2 cosx
 ⇒ cos²x – 2 cosx + 1 = 0
 ⇒ (cosx – 1)² = 0
 ⇒ cos –1 = 0
 ⇒ cos = 1
 ∴ secx = 1
 ∴ sec16x + cos16x = 1 + 1 = 2
-  If sin4θ + cos4θ = 2 sin2θ cos2θ, θ is an acute angle, then the value of tan θ is
- 
                        View Hint View Answer Discuss in Forum sin4 θ + cos4 θ = 2 sin² θ. cos²θ 
 ⇒ sin4 θ + cos4 θ
 – 2 sin² θ. cos² θ = 0
 ⇒ (sin² θ – cos² θ)² = 0
 ⇒ sin² θ – cos² θ = 0
 ⇒ sin² θ = cos² θ
 = tan² θ = 1
 ⇒ tan θ = + 1
 ∵ θ is acute angle.Correct Option: Asin4 θ + cos4 θ = 2 sin² θ. cos²θ 
 ⇒ sin4 θ + cos4 θ
 – 2 sin² θ. cos² θ = 0
 ⇒ (sin² θ – cos² θ)² = 0
 ⇒ sin² θ – cos² θ = 0
 ⇒ sin² θ = cos² θ
 = tan² θ = 1
 ⇒ tan θ = + 1
 ∵ θ is acute angle.
-  The maximum value of sin2θ + cos2θ is
- 
                        View Hint View Answer Discuss in Forum Expression 
 = sin4θ + cos4θ
 = (sin²θ)² + (cos²θ)²
 = (sin²θ + cos²θ)² – 2 sin²θ.cos²θ.
 = 1 – 2 sin²θ. cos²θ.= 1 - 4sin²θ . cos²θ 2 
 [∵ sin²θ = 2 sinθ . cosθ]= 1 - sin²2θ 2 = 1 - 1 - cos4θ 4 
 [∵ 1 – cos²θ = 2cos²θ]= 1 - 1 + cos4θ 4 4 = 1 - 1 + 1 = 1 4 4 
 (cos 4θ ≤1)
 OR
 The value of sin4 θ + cos4 θ will be
 maximum if θ = 0°
 ∴ Required value = (sin0)4 + (cos0)4 = 0 + 1 = 1Correct Option: BExpression 
 = sin4θ + cos4θ
 = (sin²θ)² + (cos²θ)²
 = (sin²θ + cos²θ)² – 2 sin²θ.cos²θ.
 = 1 – 2 sin²θ. cos²θ.= 1 - 4sin²θ . cos²θ 2 
 [∵ sin²θ = 2 sinθ . cosθ]= 1 - sin²2θ 2 = 1 - 1 - cos4θ 4 
 [∵ 1 – cos²θ = 2cos²θ]= 1 - 1 + cos4θ 4 4 = 1 - 1 + 1 = 1 4 4 
 (cos 4θ ≤1)
 OR
 The value of sin4 θ + cos4 θ will be
 maximum if θ = 0°
 ∴ Required value = (sin0)4 + (cos0)4 = 0 + 1 = 1
-  Find the value of tan 4° tan 43° tan 47° tan 86°
- 
                        View Hint View Answer Discuss in Forum tan 86° = cot (90° – 86°) = cot 4°. 
 tan 47° = cot (90° – 47°) = cot 43°
 7there4; (tan 4°. tan 86°) (tan 43°.tan 47°)
 = (tan 4° : cot 4°) (tan 43°.cot 43°)
 = 1 (∵ tanθ . cotθ = 1)Correct Option: Btan 86° = cot (90° – 86°) = cot 4°. 
 tan 47° = cot (90° – 47°) = cot 43°
 7there4; (tan 4°. tan 86°) (tan 43°.tan 47°)
 = (tan 4° : cot 4°) (tan 43°.cot 43°)
 = 1 (∵ tanθ . cotθ = 1)
 
	