Trigonometry
-  The value of sec  cos²A(sin A + cosA) + sin² A(sin A - cos A)  (sec² A - cosec² A) cosec²A(sin A - cos A) sec² A(sin A + coa A) 
- 
                        View Hint View Answer Discuss in Forum Expression  cos²A(sinA + cosA) + sin²A(sinA - cosA)  ×  1 - 1  cosec²A(sinA - cosA) sec²A(sinA + cosA) cos²A sin²A  cos²A.sin²A (sinA + cosA) + sin²A.cos²A(sinA - cosA)  ×  sin²A - cos²A  sinA - cosA (sinA + cosA) sin²A.cos²A =  sinA + cosA + sinA - cosA  (sin²A - cos²A) sinA - cosA sinA + cosA  (sinA + cosA)² + (sinA - cosA)²  (sin²A - cos²A) (sinA - cosA)(sinA + cosA) 
 = 2(sin²A + cos²A) = 2Correct Option: CExpression  cos²A(sinA + cosA) + sin²A(sinA - cosA)  ×  1 - 1  cosec²A(sinA - cosA) sec²A(sinA + cosA) cos²A sin²A  cos²A.sin²A (sinA + cosA) + sin²A.cos²A(sinA - cosA)  ×  sin²A - cos²A  sinA - cosA (sinA + cosA) sin²A.cos²A =  sinA + cosA + sinA - cosA  (sin²A - cos²A) sinA - cosA sinA + cosA  (sinA + cosA)² + (sinA - cosA)²  (sin²A - cos²A) (sinA - cosA)(sinA + cosA) 
 = 2(sin²A + cos²A) = 2
-  The eliminant of q from x cosθ – y sin θ = 2 and x sin θ + y cos θ = 4 will give
- 
                        View Hint View Answer Discuss in Forum x cos θ – y sin θ = 2 
 x sin θ + y cos θ = 4
 On squaring both the equations and adding
 x²cos²θ + y²sin²θ – 2 xy sin θ . cos θ + x²sin²θ + y² cos²θ + 2xy sin θ . cos θ
 = 4 + 16
 ⇒ x² (cos²θ + sin²θ ) + y²
 (sin²θ + cos²θ ) = 20
 ⇒ x² + y² = 20Correct Option: Ax cos θ – y sin θ = 2 
 x sin θ + y cos θ = 4
 On squaring both the equations and adding
 x²cos²θ + y²sin²θ – 2 xy sin θ . cos θ + x²sin²θ + y² cos²θ + 2xy sin θ . cos θ
 = 4 + 16
 ⇒ x² (cos²θ + sin²θ ) + y²
 (sin²θ + cos²θ ) = 20
 ⇒ x² + y² = 20
-  If tan θ + cot θ = 2, then the value of tan2θ + cot2θ is
- 
                        View Hint View Answer Discuss in Forum tan θ + cot θ = 2 
 On squaring both sides,
 (tan θ + cot θ )² = 4
 ⇒ tan²θ + cot²θ + 2tan θ . cot θ = 4
 ⇒ tan²θ + cot²θ = 4 – 2 = 2
 [tan θ .cot θ = 1]Correct Option: Atan θ + cot θ = 2 
 On squaring both sides,
 (tan θ + cot θ )² = 4
 ⇒ tan²θ + cot²θ + 2tan θ . cot θ = 4
 ⇒ tan²θ + cot²θ = 4 – 2 = 2
 [tan θ .cot θ = 1]
-  the value of sec θ  1 + sin θ + cos θ  - 2tan²θ is cos θ 1 + sin θ 
- 
                        View Hint View Answer Discuss in Forum Expression = sec θ  1 + sin θ + cos θ  - 2 tan²θ cos θ 1 + sin θ = 1 + sin² θ + 2sin θ + cos² θ - 2 tan² θ cos² θ(1 + sin θ) = 2 - 2 tan² θ cos² θ 
 = 2 sec² θ - 2 tan² θ
 =2(sec² θ - tan² θ) = 2Correct Option: CExpression = sec θ  1 + sin θ + cos θ  - 2 tan²θ cos θ 1 + sin θ = 1 + sin² θ + 2sin θ + cos² θ - 2 tan² θ cos² θ(1 + sin θ) = 2 - 2 tan² θ cos² θ 
 = 2 sec² θ - 2 tan² θ
 =2(sec² θ - tan² θ) = 2
-  The value of 3 (sin x – cos x)4 + 6 (sin x + cos x)2+ 4 (sin6 x + cos6 x) is
- 
                        View Hint View Answer Discuss in Forum 3 (sin x – cos x)4 + 6 (sinx + cos x)2 + 4 (sin6x + cos6 x) 
 = 3 (sin2x + cos2x – 2 sinx . cosx)2 + 6(sin2x + cos2 x + 2 sinx . cosx ) + 4[(sin2x + cos2x)3 – 3 sin2x . cos2x (sin2x + cos2x)]
 = 3 (1 – 2 sinx cosx)² + 6(1 + 2 sinx . cosx) + 4(1 – 3 sin²x cos²x)
 = 3 (1 + sin²x . cos²x – 4 sinx cosx) + 6 (1+ 2 sinx cosx) + 4 (1 – 3 sin²x cos²x)
 = 3 + 6 + 4 = 13Correct Option: D3 (sin x – cos x)4 + 6 (sinx + cos x)2 + 4 (sin6x + cos6 x) 
 = 3 (sin2x + cos2x – 2 sinx . cosx)2 + 6(sin2x + cos2 x + 2 sinx . cosx ) + 4[(sin2x + cos2x)3 – 3 sin2x . cos2x (sin2x + cos2x)]
 = 3 (1 – 2 sinx cosx)² + 6(1 + 2 sinx . cosx) + 4(1 – 3 sin²x cos²x)
 = 3 (1 + sin²x . cos²x – 4 sinx cosx) + 6 (1+ 2 sinx cosx) + 4 (1 – 3 sin²x cos²x)
 = 3 + 6 + 4 = 13
 
	