Trigonometry


  1. A man on the top of a tower, standing on the sea shore, finds that a boat coming towards him takes 10 minutes for the angle of depression to change from 30° to 60°. How soon the boat reach the seashore?









  1. View Hint View Answer Discuss in Forum


    Let speed of boat = v metre/minute
    Time taken to reach B from D = t minutes
    ∠ACB = 30°; ∠ADB = 60°
    AB = Tower
    In ∆ABC,

    tan 30° =
    AB
    BC

    1
    =
    AB
    3vt + 10v

    ⇒ AB =
    vt + 10v
    3

    In ∆ABD,
    tan 60° =
    AB
    BD

    ⇒ √3 =
    AB
    vt

    ⇒ √3 vt = AB
    ⇒ √3vt =
    10v + vt
    3

    ⇒ 3t = 10 + t
    ⇒ 2t = 10
    ⇒ t = 5 minutes

    Correct Option: A


    Let speed of boat = v metre/minute
    Time taken to reach B from D = t minutes
    ∠ACB = 30°; ∠ADB = 60°
    AB = Tower
    In ∆ABC,

    tan 30° =
    AB
    BC

    1
    =
    AB
    3vt + 10v

    ⇒ AB =
    vt + 10v
    3

    In ∆ABD,
    tan 60° =
    AB
    BD

    ⇒ √3 =
    AB
    vt

    ⇒ √3 vt = AB
    ⇒ √3vt =
    10v + vt
    3

    ⇒ 3t = 10 + t
    ⇒ 2t = 10
    ⇒ t = 5 minutes


  1. From the top of a cliff 100 metre high, the angles of depression of the top and bottom of a tower are 45° and 60° respectively. The height of the tower is









  1. View Hint View Answer Discuss in Forum


    AB = Height of cliff = 100 metre.
    CD = Height of tower = h metre.
    ∠ADE = 45°, ∠ACB = 60°
    In ∆ABC,

    tan 60° =
    AB
    BC

    ⇒ √3
    =
    100
    BC

    ⇒ BC =
    100
    metre ....(1)
    3

    In ∆ADE,
    tan 45° =
    AE
    DE

    ⇒ 1 =
    AE
    =
    100 - h
    BCBC

    ⇒ BC = 100 – h
    100
    = 100 - h
    3

    ⇒ h = 100 –
    100
    3

    =
    100√3
    - 100
    3

    =
    100(√3 - 1)
    =
    100√3(√3 - 1)
    33

    =
    100(3 - √3)
    metre
    3

    Correct Option: A


    AB = Height of cliff = 100 metre.
    CD = Height of tower = h metre.
    ∠ADE = 45°, ∠ACB = 60°
    In ∆ABC,

    tan 60° =
    AB
    BC

    ⇒ √3
    =
    100
    BC

    ⇒ BC =
    100
    metre ....(1)
    3

    In ∆ADE,
    tan 45° =
    AE
    DE

    ⇒ 1 =
    AE
    =
    100 - h
    BCBC

    ⇒ BC = 100 – h
    100
    = 100 - h
    3

    ⇒ h = 100 –
    100
    3

    =
    100√3
    - 100
    3

    =
    100(√3 - 1)
    =
    100√3(√3 - 1)
    33

    =
    100(3 - √3)
    metre
    3



  1. If secθ + tanθ = 2, then the value of sec θ is









  1. View Hint View Answer Discuss in Forum

    sec θ + tan θ = 2 ......(i)
    ∴ sec² θ – tan² θ = 1
    ⇒ (sec θ + tan θ) (sec θ – tan θ) = 1

    ⇒ sec θ – tan θ =
    1
    ......(ii)
    2

    By adding equations (i) and (ii),
    ∴ sec θ + tan θ + sec θ – tan θ
    = 2 +
    1
    =
    5
    22

    ⇒ 2 sec θ =
    5
    ⇒ sec θ =
    5
    24

    Correct Option: C

    sec θ + tan θ = 2 ......(i)
    ∴ sec² θ – tan² θ = 1
    ⇒ (sec θ + tan θ) (sec θ – tan θ) = 1

    ⇒ sec θ – tan θ =
    1
    ......(ii)
    2

    By adding equations (i) and (ii),
    ∴ sec θ + tan θ + sec θ – tan θ
    = 2 +
    1
    =
    5
    22

    ⇒ 2 sec θ =
    5
    ⇒ sec θ =
    5
    24


  1. A pilot in an aeroplane at an altitude of 200 metre observes two points lying on either side of a river. If the angles of depression of the two points be 45° and 60°, then the width of the river is









  1. View Hint View Answer Discuss in Forum


    P = Position of pilot ;
    PC = 200 metre
    AB = width of river
    AC = x metre (let)
    CB = y metre (let)
    ∠PAC = 45° ; ∠PBC = 60°
    In ∆ APC,

    tan45° =
    PC
    AC

    ⇒ 1 =
    200
    x

    ⇒ x = 200 metre
    In ∆ PCB,
    tan 60° =
    PC
    CB

    ⇒ √3
    =
    200
    y

    ⇒ y
    =
    200
    metre
    3

    ∴ Width of river = x + y
    =200 +200 metre
    3

    Correct Option: A


    P = Position of pilot ;
    PC = 200 metre
    AB = width of river
    AC = x metre (let)
    CB = y metre (let)
    ∠PAC = 45° ; ∠PBC = 60°
    In ∆ APC,

    tan45° =
    PC
    AC

    ⇒ 1 =
    200
    x

    ⇒ x = 200 metre
    In ∆ PCB,
    tan 60° =
    PC
    CB

    ⇒ √3
    =
    200
    y

    ⇒ y
    =
    200
    metre
    3

    ∴ Width of river = x + y
    =200 +200 metre
    3



  1. The angle of depression of a point situated at a distance of 70 m from the base of a tower is 60°. The height of the tower is :









  1. View Hint View Answer Discuss in Forum


    AB = Tower = h metre (let)
    ∠DAC = ∠ACB = 60°
    BC = 70 metre
    In ∆ABC,

    tan 60° =
    AB
    BC

    ⇒ √3
    =
    h
    70

    ⇒ h = 70 √3 metre

    Correct Option: B


    AB = Tower = h metre (let)
    ∠DAC = ∠ACB = 60°
    BC = 70 metre
    In ∆ABC,

    tan 60° =
    AB
    BC

    ⇒ √3
    =
    h
    70

    ⇒ h = 70 √3 metre