Trigonometry


  1. If sin θ – cos θ = (7 / 13) and 0 < θ < 90°, then the value of sin θ + cos θ is









  1. View Hint View Answer Discuss in Forum

    sin θ – cos θ =
    7
    ......(i)
    13

    sin θ + cos θ = x .....(ii)
    On squaring both equations and adding,
    2(sin²θ + cos²θ) =
    49
    + x²
    169

    ⇒ x² = 2 -
    49
    =
    338 - 49
    169169

    =
    289
    ⇒ x =
    17
    16913

    Correct Option: A

    sin θ – cos θ =
    7
    ......(i)
    13

    sin θ + cos θ = x .....(ii)
    On squaring both equations and adding,
    2(sin²θ + cos²θ) =
    49
    + x²
    169

    ⇒ x² = 2 -
    49
    =
    338 - 49
    169169

    =
    289
    ⇒ x =
    17
    16913


  1. If θ be acute and tan θ + cot θ = 2, then the value of tan5 θ + cot10 θ is









  1. View Hint View Answer Discuss in Forum

    tan θ + cot θ = 2

    ⇒tan θ +
    1
    = 2
    tan θ

    ⇒ tan² θ + 1 = 2tan θ
    ⇒ tan² θ – 2tan θ + 1 = 0
    ⇒ (tan θ – 1)² = 0
    ⇒ tan θ = 1 ⇒ cot θ = 1
    ∴ tan5 θ + cot10 θ = 1 + 1 = 2

    Correct Option: B

    tan θ + cot θ = 2

    ⇒tan θ +
    1
    = 2
    tan θ

    ⇒ tan² θ + 1 = 2tan θ
    ⇒ tan² θ – 2tan θ + 1 = 0
    ⇒ (tan θ – 1)² = 0
    ⇒ tan θ = 1 ⇒ cot θ = 1
    ∴ tan5 θ + cot10 θ = 1 + 1 = 2



  1. The simplified value of (sec A – cos A)² + (cosec A – sin A)² – (cot A – tan A)² is









  1. View Hint View Answer Discuss in Forum

    (sec A – cosA)² + (cosec A – sinA)² – (cot A – tan A)²
    = sec²A + cos²A – 2secA cosA + cosec²A + sin²A– 2cosec A. sinA – cot²A – tan²A + 2 cotA. tanA
    = sec²A – tan²A + cos²A+ sin²A + cosec²A – cot²A – 2
    = 3 – 2 = 1

    Correct Option: C

    (sec A – cosA)² + (cosec A – sinA)² – (cot A – tan A)²
    = sec²A + cos²A – 2secA cosA + cosec²A + sin²A– 2cosec A. sinA – cot²A – tan²A + 2 cotA. tanA
    = sec²A – tan²A + cos²A+ sin²A + cosec²A – cot²A – 2
    = 3 – 2 = 1


  1. If tan θ =
    4
    , then the value of
    3sin θ + 2cos θ
    is
    33sin θ - 2cos θ









  1. View Hint View Answer Discuss in Forum

    tan θ =
    4
    (Given)
    3

    3 sin θ + 2 cos θ
    =
    3 tan θ + 2
    3sin θ - 2 cos θ3 tan θ - 2

    [Dividing Nr & Dr by cos θ]

    Correct Option: C

    tan θ =
    4
    (Given)
    3

    3 sin θ + 2 cos θ
    =
    3 tan θ + 2
    3sin θ - 2 cos θ3 tan θ - 2

    [Dividing Nr & Dr by cos θ]



  1. If θ be a positive acute angle satisfying cos²θ+ cos4 θ = 1, then the value of tan²θ+ tan4 θ is









  1. View Hint View Answer Discuss in Forum

    cos²θ + cos4θ = 1
    ⇒ cos3θ = 1 – cos²θ = sin²θ
    ⇒ tan²θ = cos²θ
    ∴ tan²θ + tan3θ = cos²θ + cos3θ
    = 1

    Correct Option: B

    cos²θ + cos4θ = 1
    ⇒ cos3θ = 1 – cos²θ = sin²θ
    ⇒ tan²θ = cos²θ
    ∴ tan²θ + tan3θ = cos²θ + cos3θ
    = 1