Trigonometry
-  If sin θ – cos θ = (7 / 13) and 0 < θ < 90°, then the value of sin θ + cos θ is
- 
                        View Hint View Answer Discuss in Forum sin θ – cos θ = 7 ......(i) 13 
 sin θ + cos θ = x .....(ii)
 On squaring both equations and adding,2(sin²θ + cos²θ) = 49 + x² 169 ⇒ x² = 2 - 49 = 338 - 49 169 169 = 289 ⇒ x = 17 169 13 
 Correct Option: Asin θ – cos θ = 7 ......(i) 13 
 sin θ + cos θ = x .....(ii)
 On squaring both equations and adding,2(sin²θ + cos²θ) = 49 + x² 169 ⇒ x² = 2 - 49 = 338 - 49 169 169 = 289 ⇒ x = 17 169 13 
 
-  If θ be acute and tan θ + cot θ = 2, then the value of tan5 θ + cot10 θ is
- 
                        View Hint View Answer Discuss in Forum tan θ + cot θ = 2 ⇒tan θ + 1 = 2 tan θ 
 ⇒ tan² θ + 1 = 2tan θ
 ⇒ tan² θ – 2tan θ + 1 = 0
 ⇒ (tan θ – 1)² = 0
 ⇒ tan θ = 1 ⇒ cot θ = 1
 ∴ tan5 θ + cot10 θ = 1 + 1 = 2Correct Option: Btan θ + cot θ = 2 ⇒tan θ + 1 = 2 tan θ 
 ⇒ tan² θ + 1 = 2tan θ
 ⇒ tan² θ – 2tan θ + 1 = 0
 ⇒ (tan θ – 1)² = 0
 ⇒ tan θ = 1 ⇒ cot θ = 1
 ∴ tan5 θ + cot10 θ = 1 + 1 = 2
-  The simplified value of (sec A – cos A)² + (cosec A – sin A)² – (cot A – tan A)² is
- 
                        View Hint View Answer Discuss in Forum (sec A – cosA)² + (cosec A – sinA)² – (cot A – tan A)² 
 = sec²A + cos²A – 2secA cosA + cosec²A + sin²A– 2cosec A. sinA – cot²A – tan²A + 2 cotA. tanA
 = sec²A – tan²A + cos²A+ sin²A + cosec²A – cot²A – 2
 = 3 – 2 = 1 Correct Option: C(sec A – cosA)² + (cosec A – sinA)² – (cot A – tan A)² 
 = sec²A + cos²A – 2secA cosA + cosec²A + sin²A– 2cosec A. sinA – cot²A – tan²A + 2 cotA. tanA
 = sec²A – tan²A + cos²A+ sin²A + cosec²A – cot²A – 2
 = 3 – 2 = 1 
-  If tan θ = 4 , then the value of 3sin θ + 2cos θ is 3 3sin θ - 2cos θ 
- 
                        View Hint View Answer Discuss in Forum tan θ = 4 (Given) 3 ∴ 3 sin θ + 2 cos θ = 3 tan θ + 2 3sin θ - 2 cos θ 3 tan θ - 2 
 [Dividing Nr & Dr by cos θ]  Correct Option: Ctan θ = 4 (Given) 3 ∴ 3 sin θ + 2 cos θ = 3 tan θ + 2 3sin θ - 2 cos θ 3 tan θ - 2 
 [Dividing Nr & Dr by cos θ]  
-  If θ be a positive acute angle satisfying cos²θ+ cos4 θ = 1, then the value of tan²θ+ tan4 θ is
- 
                        View Hint View Answer Discuss in Forum cos²θ + cos4θ = 1 
 ⇒ cos3θ = 1 – cos²θ = sin²θ
 ⇒ tan²θ = cos²θ
 ∴ tan²θ + tan3θ = cos²θ + cos3θ
 = 1Correct Option: Bcos²θ + cos4θ = 1 
 ⇒ cos3θ = 1 – cos²θ = sin²θ
 ⇒ tan²θ = cos²θ
 ∴ tan²θ + tan3θ = cos²θ + cos3θ
 = 1
 
	