Trigonometry
-  The value of sin² 65° + sin² 25° + cos² 35° + cos² 55° is
- 
                        View Hint View Answer Discuss in Forum Expression = sin² 65° + sin² 25° + cos²35° + cos² 55° 
 = sin² 65° + sin² (90° – 65°) + cos² 35° + cos² (90° – 35°)
 = sin² 65° + cos² 65° + cos² 35° + sin² 35°
 = 1 + 1 = 2Correct Option: CExpression = sin² 65° + sin² 25° + cos²35° + cos² 55° 
 = sin² 65° + sin² (90° – 65°) + cos² 35° + cos² (90° – 35°)
 = sin² 65° + cos² 65° + cos² 35° + sin² 35°
 = 1 + 1 = 2
-  If x sin 60°.tan 30° = sec 60°.cot 45°, then the value of x is
- 
                        View Hint View Answer Discuss in Forum x.sin 60°.tan 30° 
 = sec 60°.cot 45°⇒ x × √3 × 1 = 2 × 1 2 √3 
 ⇒ x = 2 × 2 = 4Correct Option: Cx.sin 60°.tan 30° 
 = sec 60°.cot 45°⇒ x × √3 × 1 = 2 × 1 2 √3 
 ⇒ x = 2 × 2 = 4
-  Let A, B, C, D be the angles of a quadrilateral. If they are concyclic, then the value of cos A + cos B + cos C + cos D is
- 
                        View Hint View Answer Discuss in Forum  
 ABCD is a concyclic quadrilateral.
 ∠A + ∠C = ∠B + ∠D = 180°
 ∴ ∠A = 180° – ∠C
 ∴ cos A = cos (180° – C) = – cos C
 and cos B = – cos D
 ∴ cos A + cos B + cos C + cos D
 = cos A + cos B – cos A – cos B = 0Correct Option: A 
 ABCD is a concyclic quadrilateral.
 ∠A + ∠C = ∠B + ∠D = 180°
 ∴ ∠A = 180° – ∠C
 ∴ cos A = cos (180° – C) = – cos C
 and cos B = – cos D
 ∴ cos A + cos B + cos C + cos D
 = cos A + cos B – cos A – cos B = 0
-  If 0° < A < 90°, then the value of tan²A + cot² A – sec² A cosec² A is
- 
                        View Hint View Answer Discuss in Forum tan²A + cot²A – sec²A . cosec²A 
 = tan²A + cot²A – (1 + tan²A) (1 + cot²A)
 = tan²A + cot²A – (1 + tan²A +
 cot²A + cot²A.tan²A)
 = tan²A + cot²A – 1 – tan²A – cot²A – cot²A . tan²A
 = – 1 – 1 = – 2
 [ tanA . cotA = 1]Correct Option: Dtan²A + cot²A – sec²A . cosec²A 
 = tan²A + cot²A – (1 + tan²A) (1 + cot²A)
 = tan²A + cot²A – (1 + tan²A +
 cot²A + cot²A.tan²A)
 = tan²A + cot²A – 1 – tan²A – cot²A – cot²A . tan²A
 = – 1 – 1 = – 2
 [ tanA . cotA = 1]
-  If α and β are positive acute angles, sin (4α – β) = 1 and cos (2 α + β) = (1 / 2) , then the value of sin (α + 2β) is
- 
                        View Hint View Answer Discuss in Forum sin (4α – β) = 1 = sin 90° 
 ⇒ 4α – β = 90° ...(i)cos (2α + β) = 1 = cos 60° 2 
 ⇒ 2α + β = 60° ...(ii)
 On adding equations (i) and (ii),
 4α - β + 2α + β = 90° + 60°⇒ 6α = 150° ⇒ α = 150 = 25° 6 
 From equation (ii),
 2 × 25 + β = 60°
 ⇒ β = 60° – 50° = 10°
 ∴ sin (α + 2β)
 = sin (25 + 2 × 10)= sin 45° = 1 = 25° √2 
 Correct Option: Dsin (4α – β) = 1 = sin 90° 
 ⇒ 4α – β = 90° ...(i)cos (2α + β) = 1 = cos 60° 2 
 ⇒ 2α + β = 60° ...(ii)
 On adding equations (i) and (ii),
 4α - β + 2α + β = 90° + 60°⇒ 6α = 150° ⇒ α = 150 = 25° 6 
 From equation (ii),
 2 × 25 + β = 60°
 ⇒ β = 60° – 50° = 10°
 ∴ sin (α + 2β)
 = sin (25 + 2 × 10)= sin 45° = 1 = 25° √2 
 
 
	