Trigonometry


  1. The value of sin² 65° + sin² 25° + cos² 35° + cos² 55° is









  1. View Hint View Answer Discuss in Forum

    Expression = sin² 65° + sin² 25° + cos²35° + cos² 55°
    = sin² 65° + sin² (90° – 65°) + cos² 35° + cos² (90° – 35°)
    = sin² 65° + cos² 65° + cos² 35° + sin² 35°
    = 1 + 1 = 2

    Correct Option: C

    Expression = sin² 65° + sin² 25° + cos²35° + cos² 55°
    = sin² 65° + sin² (90° – 65°) + cos² 35° + cos² (90° – 35°)
    = sin² 65° + cos² 65° + cos² 35° + sin² 35°
    = 1 + 1 = 2


  1. If x sin 60°.tan 30° = sec 60°.cot 45°, then the value of x is









  1. View Hint View Answer Discuss in Forum

    x.sin 60°.tan 30°
    = sec 60°.cot 45°

    ⇒ x ×
    3
    ×
    1
    = 2 × 1
    23

    ⇒ x = 2 × 2 = 4

    Correct Option: C

    x.sin 60°.tan 30°
    = sec 60°.cot 45°

    ⇒ x ×
    3
    ×
    1
    = 2 × 1
    23

    ⇒ x = 2 × 2 = 4



  1. Let A, B, C, D be the angles of a quadrilateral. If they are concyclic, then the value of cos A + cos B + cos C + cos D is









  1. View Hint View Answer Discuss in Forum


    ABCD is a concyclic quadrilateral.
    ∠A + ∠C = ∠B + ∠D = 180°
    ∴ ∠A = 180° – ∠C
    ∴ cos A = cos (180° – C) = – cos C
    and cos B = – cos D
    ∴ cos A + cos B + cos C + cos D
    = cos A + cos B – cos A – cos B = 0

    Correct Option: A


    ABCD is a concyclic quadrilateral.
    ∠A + ∠C = ∠B + ∠D = 180°
    ∴ ∠A = 180° – ∠C
    ∴ cos A = cos (180° – C) = – cos C
    and cos B = – cos D
    ∴ cos A + cos B + cos C + cos D
    = cos A + cos B – cos A – cos B = 0


  1. If 0° < A < 90°, then the value of tan²A + cot² A – sec² A cosec² A is









  1. View Hint View Answer Discuss in Forum

    tan²A + cot²A – sec²A . cosec²A
    = tan²A + cot²A – (1 + tan²A) (1 + cot²A)
    = tan²A + cot²A – (1 + tan²A +
    cot²A + cot²A.tan²A)
    = tan²A + cot²A – 1 – tan²A – cot²A – cot²A . tan²A
    = – 1 – 1 = – 2
    [ tanA . cotA = 1]

    Correct Option: D

    tan²A + cot²A – sec²A . cosec²A
    = tan²A + cot²A – (1 + tan²A) (1 + cot²A)
    = tan²A + cot²A – (1 + tan²A +
    cot²A + cot²A.tan²A)
    = tan²A + cot²A – 1 – tan²A – cot²A – cot²A . tan²A
    = – 1 – 1 = – 2
    [ tanA . cotA = 1]



  1. If α and β are positive acute angles, sin (4α – β) = 1 and cos (2 α + β) = (1 / 2) , then the value of sin (α + 2β) is









  1. View Hint View Answer Discuss in Forum

    sin (4α – β) = 1 = sin 90°
    ⇒ 4α – β = 90° ...(i)

    cos (2α + β) =
    1
    = cos 60°
    2

    ⇒ 2α + β = 60° ...(ii)
    On adding equations (i) and (ii),
    4α - β + 2α + β = 90° + 60°
    ⇒ 6α = 150° ⇒ α =
    150
    = 25°
    6

    From equation (ii),
    2 × 25 + β = 60°
    ⇒ β = 60° – 50° = 10°
    ∴ sin (α + 2β)
    = sin (25 + 2 × 10)
    = sin 45° =
    1
    = 25°
    2

    Correct Option: D

    sin (4α – β) = 1 = sin 90°
    ⇒ 4α – β = 90° ...(i)

    cos (2α + β) =
    1
    = cos 60°
    2

    ⇒ 2α + β = 60° ...(ii)
    On adding equations (i) and (ii),
    4α - β + 2α + β = 90° + 60°
    ⇒ 6α = 150° ⇒ α =
    150
    = 25°
    6

    From equation (ii),
    2 × 25 + β = 60°
    ⇒ β = 60° – 50° = 10°
    ∴ sin (α + 2β)
    = sin (25 + 2 × 10)
    = sin 45° =
    1
    = 25°
    2