Trigonometry
-  If tan A + cot A = 2, then the value of tan10A + cot10A is
- 
                        View Hint View Answer Discuss in Forum tanA + cotA = 2 ⇒ tanA + 1 = 2 tan A ⇒ tan²A + 1 = 2 tan A 
 ⇒ tan²A + 1 = 2 tanA
 ⇒ tan²A – 2 tanA + 1 = 0
 ⇒ (tan A – 1)² = 0
 ⇒ tan A – 1= 0
 ⇒ tan A = 1
 ⇒ cot A = 1
 ∴ tan10 A + cot10 A = 1 + 1 = 2Correct Option: BtanA + cotA = 2 ⇒ tanA + 1 = 2 tan A ⇒ tan²A + 1 = 2 tan A 
 ⇒ tan²A + 1 = 2 tanA
 ⇒ tan²A – 2 tanA + 1 = 0
 ⇒ (tan A – 1)² = 0
 ⇒ tan A – 1= 0
 ⇒ tan A = 1
 ⇒ cot A = 1
 ∴ tan10 A + cot10 A = 1 + 1 = 2
-  The value of cos²30° + sin²60° + tan²45° + sec²60° + cos0° is
- 
                        View Hint View Answer Discuss in Forum cos² 30° + sin² 60° + tan² 45° + sec² 60° + cos 0° =  √3  ² +  √3  ² + (1)² + (2)² + 1 2 2 = 3 + 3 + 1 + 4 + 1 4 4 = 6 + 3 + 3 4 = 6 + 6 = 6 + 3 = 12 + 3 4 2 2 = 15 = 7 1 2 2 
 Correct Option: Dcos² 30° + sin² 60° + tan² 45° + sec² 60° + cos 0° =  √3  ² +  √3  ² + (1)² + (2)² + 1 2 2 = 3 + 3 + 1 + 4 + 1 4 4 = 6 + 3 + 3 4 = 6 + 6 = 6 + 3 = 12 + 3 4 2 2 = 15 = 7 1 2 2 
 
-  If cos α = a and sin α = b, then the value of sin²β in terms of a and b is cos β sin β 
- 
                        View Hint View Answer Discuss in Forum cos α = a ⇒ cosα = a cosβ cos β 
 On squaring both sides,
 cos²α = a² cos²β
 ⇒ 1 – sin²α = a² (1 – sin²β) ...(i)
 Again, sinα = b sinβ
 ⇒ sin²α = b² sin²β
 ∴ From equation (i),
 1 – b² sin²β = a² – a² sin²β
 ⇒ a² sin²β – b² sin²β = a² – 1
 ⇒ sin²β (a² – b² ) = a² – 1⇒ sin²β = a² - 1 a² - b² 
 Correct Option: Ccos α = a ⇒ cosα = a cosβ cos β 
 On squaring both sides,
 cos²α = a² cos²β
 ⇒ 1 – sin²α = a² (1 – sin²β) ...(i)
 Again, sinα = b sinβ
 ⇒ sin²α = b² sin²β
 ∴ From equation (i),
 1 – b² sin²β = a² – a² sin²β
 ⇒ a² sin²β – b² sin²β = a² – 1
 ⇒ sin²β (a² – b² ) = a² – 1⇒ sin²β = a² - 1 a² - b² 
 
-  If 2 tan²30° +sec²45°– sec²0° = x sec 60°, then the value of x is 1 - tan²30° 
- 
                        View Hint View Answer Discuss in Forum 2 tan² 30° + sec² 45°– sec² 0° = x sec 60° 1 - tan² 30°  ⇒ 2 × 3 + 1 = x × 2 3 2 ⇒ 2 = x × 2 ⇒ x = 2 = 1 2 
 Correct Option: B2 tan² 30° + sec² 45°– sec² 0° = x sec 60° 1 - tan² 30°  ⇒ 2 × 3 + 1 = x × 2 3 2 ⇒ 2 = x × 2 ⇒ x = 2 = 1 2 
 
-  If tanq = sin cos sin cos a a a a - + , then sina + cosa is
- 
                        View Hint View Answer Discuss in Forum tan θ = sin α - cos α sin α + cos α 
 ∴ 1 + tan²θ= 1 + (sin α - cos α)² (sin α + cos α)² 
 ⇒ sec² θ= (sin α + cos α)² + (sin α - cos α)² (sin α + cos α)² ⇒ sec²θ = (sin² α + cos² α) + (sin α - cos α) (sin α + cos α)² ⇒ 1 = 2 cos² θ (sin α + cos α)² ⇒ 1 = ±√2 cos² θ (sin α + cos α) 
 ⇒ sinα + cosα = ± √2 cos θ
 Correct Option: Btan θ = sin α - cos α sin α + cos α 
 ∴ 1 + tan²θ= 1 + (sin α - cos α)² (sin α + cos α)² 
 ⇒ sec² θ= (sin α + cos α)² + (sin α - cos α)² (sin α + cos α)² ⇒ sec²θ = (sin² α + cos² α) + (sin α - cos α) (sin α + cos α)² ⇒ 1 = 2 cos² θ (sin α + cos α)² ⇒ 1 = ±√2 cos² θ (sin α + cos α) 
 ⇒ sinα + cosα = ± √2 cos θ
 
 
	