Trigonometry


  1. If tan A + cot A = 2, then the value of tan10A + cot10A is









  1. View Hint View Answer Discuss in Forum

    tanA + cotA = 2

    ⇒ tanA +
    1
    = 2
    tan A

    tan²A + 1
    = 2
    tan A

    ⇒ tan²A + 1 = 2 tanA
    ⇒ tan²A – 2 tanA + 1 = 0
    ⇒ (tan A – 1)² = 0
    ⇒ tan A – 1= 0
    ⇒ tan A = 1
    ⇒ cot A = 1
    ∴ tan10 A + cot10 A = 1 + 1 = 2

    Correct Option: B

    tanA + cotA = 2

    ⇒ tanA +
    1
    = 2
    tan A

    tan²A + 1
    = 2
    tan A

    ⇒ tan²A + 1 = 2 tanA
    ⇒ tan²A – 2 tanA + 1 = 0
    ⇒ (tan A – 1)² = 0
    ⇒ tan A – 1= 0
    ⇒ tan A = 1
    ⇒ cot A = 1
    ∴ tan10 A + cot10 A = 1 + 1 = 2


  1. The value of cos²30° + sin²60° + tan²45° + sec²60° + cos0° is









  1. View Hint View Answer Discuss in Forum

    cos² 30° + sin² 60° + tan² 45° + sec² 60° + cos 0°

    =3
    ² + 3
    ² + (1)² + (2)² + 1
    22

    =
    3
    +
    3
    + 1 + 4 + 1
    44

    = 6 +
    3 + 3
    4

    = 6 +
    6
    = 6 +
    3
    =
    12 + 3

    422

    =
    15
    = 7
    1
    22

    Correct Option: D

    cos² 30° + sin² 60° + tan² 45° + sec² 60° + cos 0°

    =3
    ² + 3
    ² + (1)² + (2)² + 1
    22

    =
    3
    +
    3
    + 1 + 4 + 1
    44

    = 6 +
    3 + 3
    4

    = 6 +
    6
    = 6 +
    3
    =
    12 + 3

    422

    =
    15
    = 7
    1
    22



  1. If
    cos α
    = a and
    sin α
    = b, then the value of sin²β in terms of a and b is
    cos βsin β









  1. View Hint View Answer Discuss in Forum

    cos α
    = a ⇒ cosα = a cosβ
    cos β

    On squaring both sides,
    cos²α = a² cos²β
    ⇒ 1 – sin²α = a² (1 – sin²β) ...(i)
    Again, sinα = b sinβ
    ⇒ sin²α = b² sin²β
    ∴ From equation (i),
    1 – b² sin²β = a² – a² sin²β
    ⇒ a² sin²β – b² sin²β = a² – 1
    ⇒ sin²β (a² – b² ) = a² – 1
    ⇒ sin²β =
    a² - 1
    a² - b²

    Correct Option: C

    cos α
    = a ⇒ cosα = a cosβ
    cos β

    On squaring both sides,
    cos²α = a² cos²β
    ⇒ 1 – sin²α = a² (1 – sin²β) ...(i)
    Again, sinα = b sinβ
    ⇒ sin²α = b² sin²β
    ∴ From equation (i),
    1 – b² sin²β = a² – a² sin²β
    ⇒ a² sin²β – b² sin²β = a² – 1
    ⇒ sin²β (a² – b² ) = a² – 1
    ⇒ sin²β =
    a² - 1
    a² - b²


  1. If
    2 tan²30°
    +sec²45°– sec²0° = x sec 60°, then the value of x is
    1 - tan²30°









  1. View Hint View Answer Discuss in Forum

    2 tan² 30°
    + sec² 45°– sec² 0° = x sec 60°
    1 - tan² 30°


    2
    ×
    3
    + 1 = x × 2
    32

    ⇒ 2 = x × 2 ⇒ x =
    2
    = 1
    2

    Correct Option: B

    2 tan² 30°
    + sec² 45°– sec² 0° = x sec 60°
    1 - tan² 30°


    2
    ×
    3
    + 1 = x × 2
    32

    ⇒ 2 = x × 2 ⇒ x =
    2
    = 1
    2



  1. If tanq = sin cos sin cos a a a a - + , then sina + cosa is









  1. View Hint View Answer Discuss in Forum

    tan θ =
    sin α - cos α
    sin α + cos α

    ∴ 1 + tan²θ
    = 1 +
    (sin α - cos α)²
    (sin α + cos α)²

    ⇒ sec² θ
    =
    (sin α + cos α)² + (sin α - cos α)²
    (sin α + cos α)²

    ⇒ sec²θ =
    (sin² α + cos² α) + (sin α - cos α)
    (sin α + cos α)²

    1
    =
    2
    cos² θ(sin α + cos α)²

    1
    =
    ±√2
    cos² θ(sin α + cos α)

    ⇒ sinα + cosα = ± √2 cos θ

    Correct Option: B

    tan θ =
    sin α - cos α
    sin α + cos α

    ∴ 1 + tan²θ
    = 1 +
    (sin α - cos α)²
    (sin α + cos α)²

    ⇒ sec² θ
    =
    (sin α + cos α)² + (sin α - cos α)²
    (sin α + cos α)²

    ⇒ sec²θ =
    (sin² α + cos² α) + (sin α - cos α)
    (sin α + cos α)²

    1
    =
    2
    cos² θ(sin α + cos α)²

    1
    =
    ±√2
    cos² θ(sin α + cos α)

    ⇒ sinα + cosα = ± √2 cos θ