Home » Aptitude » Trigonometry » Question
  1. If
    cos α
    = a and
    sin α
    = b, then the value of sin²β in terms of a and b is
    cos βsin β
    1. a² + 1
      a² - b²
    2. a² - b²
      a² + b²
    3. a² - 1
      a² - b²
    4. a² - 1
      a² + b²
Correct Option: C

cos α
= a ⇒ cosα = a cosβ
cos β

On squaring both sides,
cos²α = a² cos²β
⇒ 1 – sin²α = a² (1 – sin²β) ...(i)
Again, sinα = b sinβ
⇒ sin²α = b² sin²β
∴ From equation (i),
1 – b² sin²β = a² – a² sin²β
⇒ a² sin²β – b² sin²β = a² – 1
⇒ sin²β (a² – b² ) = a² – 1
⇒ sin²β =
a² - 1
a² - b²



Your comments will be displayed only after manual approval.