Trigonometry


  1. Evaluate :
    sec 39°
    +
    2
    (tan 17° . tan 38° . tan 60° . tan 52° . tan 73° – 3 (sin231° + sin259°)
    cosec 51°3










  1. View Hint View Answer Discuss in Forum

    sec 39°
    +
    2
    tan17°. tan38° . tan60° . cot (90° – 52°) . cot (90° – 73°) – 3 (sin²31° + cos²(90° – 59°)
    sec(90° - 51°)3

    =
    sec 39°
    +
    2
    tan17°. tan38° × √3 . cot 38° . cot 17° – 3 (sin²31° + cos² 31°)
    sec 39°3

    = 1 +
    2
    × √3(tan 17° . cot17°) .(tan 38° . cot38°) – 3 × 1 = 1 + 2 – 3 = 0
    3

    tanq . cotq = 1
    tan (90° – θ) cotθ ;
    cot (90° – θ) tanθ ;
    sec (90° – θ) cosecθ

    Correct Option: C

    sec 39°
    +
    2
    tan17°. tan38° . tan60° . cot (90° – 52°) . cot (90° – 73°) – 3 (sin²31° + cos²(90° – 59°)
    sec(90° - 51°)3

    =
    sec 39°
    +
    2
    tan17°. tan38° × √3 . cot 38° . cot 17° – 3 (sin²31° + cos² 31°)
    sec 39°3

    = 1 +
    2
    × √3(tan 17° . cot17°) .(tan 38° . cot38°) – 3 × 1 = 1 + 2 – 3 = 0
    3

    tanq . cotq = 1
    tan (90° – θ) cotθ ;
    cot (90° – θ) tanθ ;
    sec (90° – θ) cosecθ


  1. If cosθ + secθ = 2, then cos5θ + sec5θ= ?









  1. View Hint View Answer Discuss in Forum

    cosθ + secθ = 2

    ⇒ cosθ +
    1
    = 2
    cosθ

    ⇒ cos²θ – 2 cosθ + 1 = 0
    ⇒ (cosθ – 1)² = 0
    ⇒ cosθ = 1
    ∴ cos5θ + sec5θ = 1 + 1 = 2

    Correct Option: B

    cosθ + secθ = 2

    ⇒ cosθ +
    1
    = 2
    cosθ

    ⇒ cos²θ – 2 cosθ + 1 = 0
    ⇒ (cosθ – 1)² = 0
    ⇒ cosθ = 1
    ∴ cos5θ + sec5θ = 1 + 1 = 2



  1. If cosθ – sinθ = 2 sinθ, then cosθ + sinθ = ?









  1. View Hint View Answer Discuss in Forum

    cosθ – sinθ = 2 sinθ ..(i)
    cosθ + sinθ = x ....(ii)
    On squaring both the equations and adding.
    2 (cos²θ + sin²θ) = 2sin²θ + x²
    ⇒ x² = 2 – 2 sin²θ = 2 (1 – sin²θ) = 2cos²θ
    ⇒ x = √2cosθ

    Correct Option: C

    cosθ – sinθ = 2 sinθ ..(i)
    cosθ + sinθ = x ....(ii)
    On squaring both the equations and adding.
    2 (cos²θ + sin²θ) = 2sin²θ + x²
    ⇒ x² = 2 – 2 sin²θ = 2 (1 – sin²θ) = 2cos²θ
    ⇒ x = √2cosθ


  1. The shadow of a vertical tower becomes 30 metres longer when the altitude of the sun changes from 60° to 45°. Find the height of the tower.









  1. View Hint View Answer Discuss in Forum


    AB = Tower = h metre
    DC = 30 metre
    BD = x metre
    From ∆ABC,

    tan 45° =
    AB
    ⇒ 1 =
    h
    ⇒ h = x + 30 ......(i)
    BCx + 30

    From ∆ABD,
    tan 60° =
    AB
    ⇒ √3 =
    h
    BDx

    h = √3x
    ⇒ x =
    h
    .........(ii)
    3

    ∴ h = x + 30
    ⇒ h =
    h
    + 30
    3

    ⇒ (√3 + 1)h = 30√3
    ⇒ h =
    30√3
    3 - 1

    =
    30√3(√3 + 1)
    (√3 - 1)(√3 + 1)

    = 15(3 + √3) metre.

    Correct Option: B


    AB = Tower = h metre
    DC = 30 metre
    BD = x metre
    From ∆ABC,

    tan 45° =
    AB
    ⇒ 1 =
    h
    ⇒ h = x + 30 ......(i)
    BCx + 30

    From ∆ABD,
    tan 60° =
    AB
    ⇒ √3 =
    h
    BDx

    h = √3x
    ⇒ x =
    h
    .........(ii)
    3

    ∴ h = x + 30
    ⇒ h =
    h
    + 30
    3

    ⇒ (√3 + 1)h = 30√3
    ⇒ h =
    30√3
    3 - 1

    =
    30√3(√3 + 1)
    (√3 - 1)(√3 + 1)

    = 15(3 + √3) metre.



  1. If α, β and γ each is positive acute angle, and sin (α + β – γ) = 1/2 , cos (β + γ – α) = 1/2 and tan (γ + α – β) = 1 then 2α + β = ?









  1. View Hint View Answer Discuss in Forum

    sin(α + β – γ) = 1/2 ,
    cos (β + γ– α) = 1/2
    and tan(γ + α – β) = 1
    ⇒ sin (α + β – γ) = sin30°, cos (β + γ– α) = cos60° and tan (γ + α – β) = tan 45°
    ⇒ α + β – γ = 30° .....(i)
    β + γ– α = 60° ......(ii)
    γ + α – β = 45° ......(iii)
    By equations (i) + (ii) and equations (i) + (iii).
    2β = 90° and 2α = 75°
    ⇒ β = 45° and 2α = 75°
    ⇒ 2α + β = 75° + 45° = 120°

    Correct Option: D

    sin(α + β – γ) = 1/2 ,
    cos (β + γ– α) = 1/2
    and tan(γ + α – β) = 1
    ⇒ sin (α + β – γ) = sin30°, cos (β + γ– α) = cos60° and tan (γ + α – β) = tan 45°
    ⇒ α + β – γ = 30° .....(i)
    β + γ– α = 60° ......(ii)
    γ + α – β = 45° ......(iii)
    By equations (i) + (ii) and equations (i) + (iii).
    2β = 90° and 2α = 75°
    ⇒ β = 45° and 2α = 75°
    ⇒ 2α + β = 75° + 45° = 120°