Trigonometry
-  The angle of elevation of an aeroplane from a point A on the ground is 60°. After a straight flight of the plane for 30 seconds, the angle of elevation becomes 30°. If the palne flies at a constant height of 3600√3 metre, what is the speed of plane?
- 
                        View Hint View Answer Discuss in Forum  
 P and Q = Positions of plane
 ∠PAB = 60°, ∠QAB = 30°, PB = 3600√3 metre
 In ∆ABP,tan 60° = BP AB ⇒ √3 = 3600√3 AB 
 ⇒ AB = 3600 metre
 In ∆ACQ,tan 30° = CQ AC ⇒ 1 = 3600√3 √3 AC 
 ⇒ AC = 3600 × 3 = 10800 metre
 ∴ PQ = BC = AC – AB = 10800 – 3600 = 7200 metre
 This distance is covered in 30 seconds.∴ Speed of plane = 7200 = 240 m/sec. 30 
 = 240=  240 × 18  5 
 = 864 kmphCorrect Option: A 
 P and Q = Positions of plane
 ∠PAB = 60°, ∠QAB = 30°, PB = 3600√3 metre
 In ∆ABP,tan 60° = BP AB ⇒ √3 = 3600√3 AB 
 ⇒ AB = 3600 metre
 In ∆ACQ,tan 30° = CQ AC ⇒ 1 = 3600√3 √3 AC 
 ⇒ AC = 3600 × 3 = 10800 metre
 ∴ PQ = BC = AC – AB = 10800 – 3600 = 7200 metre
 This distance is covered in 30 seconds.∴ Speed of plane = 7200 = 240 m/sec. 30 
 = 240=  240 × 18  5 
 = 864 kmph
-  sin 75° + sin 15° can be expressed as
- 
                        View Hint View Answer Discuss in Forum sin 75° + sin 15° = 2 sin =  75° + 15°  . cos  75° - 15°  2 2 
 ∵ sinC + sinD= 2sin  C + D  . cos  C - D  2 2 
 = 2 sin 45° . cos 30°= 2 . 1 . √3 √2 2 
 √3/2Correct Option: Dsin 75° + sin 15° = 2 sin =  75° + 15°  . cos  75° - 15°  2 2 
 ∵ sinC + sinD= 2sin  C + D  . cos  C - D  2 2 
 = 2 sin 45° . cos 30°= 2 . 1 . √3 √2 2 
 √3/2
-  What will be the value of 2 cos 45° × sin 15°
- 
                        View Hint View Answer Discuss in Forum We know that, 
 2 cosA sinB = sin(A + B) – sin(A – B)
 ⇒ 2 cos 45° sin 15°
 = sin (45° + 15°) – sin (45° – 15°)
 = sin 60° – sin 30°= √3 - 1 2 2 = √3 - 1 1 Correct Option: CWe know that, 
 2 cosA sinB = sin(A + B) – sin(A – B)
 ⇒ 2 cos 45° sin 15°
 = sin (45° + 15°) – sin (45° – 15°)
 = sin 60° – sin 30°= √3 - 1 2 2 = √3 - 1 1 
-  The value of sin 22 1° will be 2 
- 
                        View Hint View Answer Discuss in Forum We know that, 
 cos2A = 1 – 2 sin²A⇒ cosA = 1 – 2 sin² A 2 
 Let A = 45°⇒ cos 45° = 1 – 2 sin² 45° 2 ⇒ 2 sin² 22 1° = 1 – cos 45° 2 ⇒ 2 sin² 22 1° = 1 – 1 2 √2 ⇒ 2 sin² 22 1° = √2 - 1 2 √2 ⇒ 2 sin² 22 1° = √2 - 1 2 2√2 ⇒ 2 sin² 22 1° = √ √2 - 1 2 2√2 Correct Option: DWe know that, 
 cos2A = 1 – 2 sin²A⇒ cosA = 1 – 2 sin² A 2 
 Let A = 45°⇒ cos 45° = 1 – 2 sin² 45° 2 ⇒ 2 sin² 22 1° = 1 – cos 45° 2 ⇒ 2 sin² 22 1° = 1 – 1 2 √2 ⇒ 2 sin² 22 1° = √2 - 1 2 √2 ⇒ 2 sin² 22 1° = √2 - 1 2 2√2 ⇒ 2 sin² 22 1° = √ √2 - 1 2 2√2 
-  The value of cosα + cosβ will be sinα + sinβ 
- 
                        View Hint View Answer Discuss in Forum cosα + cosβ sinα + sinβ = 2.cos  α + β  cos  α - β  2 2 2.sin  α + β  sin  α - β  2 2 = cos  α + β  2 sin  α + β  2 = cot  α + β  2 Correct Option: Bcosα + cosβ sinα + sinβ = 2.cos  α + β  cos  α - β  2 2 2.sin  α + β  sin  α - β  2 2 = cos  α + β  2 sin  α + β  2 = cot  α + β  2 
 
	