Trigonometry


  1. If cosx . cosy + sinx . siny = –1 then cosx + cosy is









  1. View Hint View Answer Discuss in Forum

    cosx . cosy + sinx. siny = –1
    ⇒ cosx . cosy + 1 = – sinx . siny On squaring both sides, (cosx . cosy + 1)² = sin²x sin²y
    ⇒ cos²x . cos²y + 2cosx . cosy + 1 = (1 – cos²x) (1 – cos²y)
    ⇒ cos²x . cos2y + 2 cosx. cosy + 1 = 1 – cos²x – cos²y + cos²x . cos²y
    ⇒ cos²x + cos2y + 2cosx . cosy = 0
    ⇒ (cosx + cosy)² = 0
    ⇒ cosx + cosy = 0

    Correct Option: C

    cosx . cosy + sinx. siny = –1
    ⇒ cosx . cosy + 1 = – sinx . siny On squaring both sides, (cosx . cosy + 1)² = sin²x sin²y
    ⇒ cos²x . cos²y + 2cosx . cosy + 1 = (1 – cos²x) (1 – cos²y)
    ⇒ cos²x . cos2y + 2 cosx. cosy + 1 = 1 – cos²x – cos²y + cos²x . cos²y
    ⇒ cos²x + cos2y + 2cosx . cosy = 0
    ⇒ (cosx + cosy)² = 0
    ⇒ cosx + cosy = 0


  1. ABC is a right angled triangle with ∠A = 90°. Then the value of cos²A + cos²B + cos²C is :









  1. View Hint View Answer Discuss in Forum


    ∠CAB = 90°
    ∴ cosA = cos 90° = 0

    cosB =
    AB
    , cosC =
    AC
    BCBC

    ∴ cos²A + cos²B + cos²C
    = 0 +
    AB²
    +
    AC²
    BC²BC²

    =
    AB² + AC²
    =
    BC²
    = 1
    BC²BC²

    Correct Option: B


    ∠CAB = 90°
    ∴ cosA = cos 90° = 0

    cosB =
    AB
    , cosC =
    AC
    BCBC

    ∴ cos²A + cos²B + cos²C
    = 0 +
    AB²
    +
    AC²
    BC²BC²

    =
    AB² + AC²
    =
    BC²
    = 1
    BC²BC²



  1. If r sinθ = 7/2 and r cosθ = 7√3/2 then the value of θ is :









  1. View Hint View Answer Discuss in Forum

    r sinθ =
    7
    2

    r cosθ =
    7√3
    2

    rsinθ
    =
    7/2
    rcosθ7√3/2

    ⇒ tanθ =
    7
    ×
    2
    =
    1
    27√33

    ⇒ tanθ = tan30°
    ⇒ θ = 30°

    Correct Option: A

    r sinθ =
    7
    2

    r cosθ =
    7√3
    2

    rsinθ
    =
    7/2
    rcosθ7√3/2

    ⇒ tanθ =
    7
    ×
    2
    =
    1
    27√33

    ⇒ tanθ = tan30°
    ⇒ θ = 30°


  1. If tanq = 1, then the value of
    8sinθ + 5cosθ
    is :
    sin²θ - 2cos²θ + 7cosθ









  1. View Hint View Answer Discuss in Forum

    Expression =
    8sinθ + 5cosθ
    sin³θ - 2cos³θ + 7cosθ

    Dividing numerator and denominator by cos³θ
    =  
    8sinθ
      +
    5cosθ
    cos³θcos³θ
    sin³θ
    -
    2cos³θ
      +
    7cosθ
    cos³θcos³θcos³θ

    =
    8tanθ.sec²θ + 5cos²θ
    tan³θ - 2 + 7(1 + tan²θ)

    =
    16 + 10 × 2
    1 - 2 + 7(1 + 1)

    =
    8(1 + 1) +
    1 - 2 + 14

    =
    26
    = 2
    13

    Correct Option: C

    Expression =
    8sinθ + 5cosθ
    sin³θ - 2cos³θ + 7cosθ

    Dividing numerator and denominator by cos³θ
    =  
    8sinθ
      +
    5cosθ
    cos³θcos³θ
    sin³θ
    -
    2cos³θ
      +
    7cosθ
    cos³θcos³θcos³θ

    =
    8tanθ.sec²θ + 5cos²θ
    tan³θ - 2 + 7(1 + tan²θ)

    =
    16 + 10 × 2
    1 - 2 + 7(1 + 1)

    =
    8(1 + 1) +
    1 - 2 + 14

    =
    26
    = 2
    13



  1. If θ is positive acute angle and 4 sin²θ = 3, then the value of
    tanθ - cot
    θ
    is :
    2









  1. View Hint View Answer Discuss in Forum

    4 sin²θ = 3
    ⇒ sin²θ = 3/4

    ⇒ sinθ =
    3
    = sin 60°
    2

    ⇒ θ = 60°
    &threre4; tanθ – cot
    θ
    2

    = tan 60° – cot 30° = √3 – √3 = 0

    Correct Option: B

    4 sin²θ = 3
    ⇒ sin²θ = 3/4

    ⇒ sinθ =
    3
    = sin 60°
    2

    ⇒ θ = 60°
    &threre4; tanθ – cot
    θ
    2

    = tan 60° – cot 30° = √3 – √3 = 0