Trigonometry
-  What is the value of A ? A -  cos θ + sin(-θ) - tan(90° + θ)  ? sin(90° + θ) sin(180° + θ) cot θ 
- 
                        View Hint View Answer Discuss in Forum cos θ + sin(-θ) - tan(90° + θ) sin(90° + θ) sin(180° + θ) cot θ = cos θ +  - sinθ  + cotθ cosθ - sinθ cot θ 
 = 1 + 1 + 1 = 3Correct Option: Ccos θ + sin(-θ) - tan(90° + θ) sin(90° + θ) sin(180° + θ) cot θ = cos θ +  - sinθ  + cotθ cosθ - sinθ cot θ 
 = 1 + 1 + 1 = 3
-  What is the value of tan  π + x  ? 4 
- 
                        View Hint View Answer Discuss in Forum tan = tan π + tan x  π + x  4 4 1 - tan π tan x 4  ∵ tan(A + b) tanA + tanB  1 - tanA tanB = 1 + tanx 1 - tanx Correct Option: Btan = tan π + tan x  π + x  4 4 1 - tan π tan x 4  ∵ tan(A + b) tanA + tanB  1 - tanA tanB = 1 + tanx 1 - tanx 
-  If cosC – cosD = y, then the value of y is
- 
                        View Hint View Answer Discuss in Forum Here, 
 cosC – cosD = y
 ⇒ y = cosC – cosD
 ⇒ y = –2sin C + D  .sin  C - D  2 2 
 [∵ It is the basic formula of cosC – cosD]Correct Option: CHere, 
 cosC – cosD = y
 ⇒ y = cosC – cosD
 ⇒ y = –2sin C + D  .sin  C - D  2 2 
 [∵ It is the basic formula of cosC – cosD]
-  If sinx = 1/3 , then the value of sin3x will be
- 
                        View Hint View Answer Discuss in Forum Here, sinx = 1 3 
 We know that, sin3x = 3sinx – 4sin³x
 On putting the value of sinx, we getsin 3x = 3  1  - 4  1  ³ 3 3 = 1 – 4 27 = 27 - 4 27 sin3x = 23 27 Correct Option: DHere, sinx = 1 3 
 We know that, sin3x = 3sinx – 4sin³x
 On putting the value of sinx, we getsin 3x = 3  1  - 4  1  ³ 3 3 = 1 – 4 27 = 27 - 4 27 sin3x = 23 27 
-  If sinx × cosy + cosx × siny = 1, then the value of x + y will be
- 
                        View Hint View Answer Discuss in Forum Here, 
 sinx × cosy + cosx × siny = 1
 → sin(x + y) = 1
 [∵ sin (A + B) = sinA cosB + cosA sinB]⇒ sin(x + y) = sin π 2 ⇒ x + y = π 2 Correct Option: AHere, 
 sinx × cosy + cosx × siny = 1
 → sin(x + y) = 1
 [∵ sin (A + B) = sinA cosB + cosA sinB]⇒ sin(x + y) = sin π 2 ⇒ x + y = π 2 
 
	