Trigonometry
-  (1 + tan²A) cotA is equal to cosec²A 
- 
                        View Hint View Answer Discuss in Forum Expression = (1 + tan²A) cotA cosec²A 
 = sec²A . cotA . sin²A (sinA . cosecA = 1)= 1 . cosA .sin²A cos²A sinA = sinA = tanA cosA Correct Option: BExpression = (1 + tan²A) cotA cosec²A 
 = sec²A . cotA . sin²A (sinA . cosecA = 1)= 1 . cosA .sin²A cos²A sinA = sinA = tanA cosA 
-  What is the value of sec 330°?
- 
                        View Hint View Answer Discuss in Forum sec 330° = sec (360° – 30°) = sec 30° = 2/3 
 [∵ sec (360° – θ) = secθ]Correct Option: Dsec 330° = sec (360° – 30°) = sec 30° = 2/3 
 [∵ sec (360° – θ) = secθ]
-  If 1 = x, then the value of x is (tanA + cotA) 
- 
                        View Hint View Answer Discuss in Forum 1 = x tanA + cotB ⇒ 1 = x sinA + cosA cosA sinA ⇒ 1 = x sin²A + cos²A sinAcosA ⇒ 1 = sinA.cosA 1 sinAcosA Correct Option: A1 = x tanA + cotB ⇒ 1 = x sinA + cosA cosA sinA ⇒ 1 = x sin²A + cos²A sinAcosA ⇒ 1 = sinA.cosA 1 sinAcosA 
-  What is the value of sin  11π  ? 6 
- 
                        View Hint View Answer Discuss in Forum sin 11π 6 = sin  2π - π  6 
 [∵ sin (360° – θ)
 = sin (2π – θ) = –sin θ]= - sin π = - 1 6 2 Correct Option: Csin 11π 6 = sin  2π - π  6 
 [∵ sin (360° – θ)
 = sin (2π – θ) = –sin θ]= - sin π = - 1 6 2 
-  If secA + tanA = a, then the value of cosA is
- 
                        View Hint View Answer Discuss in Forum secA + tanA = a ..... (i) 
 ∵ sec²A – tan²A = 1
 ⇒ (secA + tanA) (secA – tanA) = 1
 ² secA – tanA = 1/a ... (ii)
 On adding equations (i) and (ii),2 secA = a + 1 = a² + 1 a a ⇒ secA = a² + 1 2a ⇒ cosA = 2a a² + 1 Correct Option: BsecA + tanA = a ..... (i) 
 ∵ sec²A – tan²A = 1
 ⇒ (secA + tanA) (secA – tanA) = 1
 ² secA – tanA = 1/a ... (ii)
 On adding equations (i) and (ii),2 secA = a + 1 = a² + 1 a a ⇒ secA = a² + 1 2a ⇒ cosA = 2a a² + 1 
 
	