Trigonometry


  1. The shadow of a vertical tower becomes 30 metres longer when the altitude of the sun changes from 60° to 45°. Find the height of the tower.









  1. View Hint View Answer Discuss in Forum


    AB = Tower = h metre
    DC = 30 metre
    BD = x metre
    From ∆ABC,

    tan 45° =
    AB
    ⇒ 1 =
    h
    ⇒ h = x + 30 ......(i)
    BCx + 30

    From ∆ABD,
    tan 60° =
    AB
    ⇒ √3 =
    h
    BDx

    h = √3x
    ⇒ x =
    h
    .........(ii)
    3

    ∴ h = x + 30
    ⇒ h =
    h
    + 30
    3

    ⇒ (√3 + 1)h = 30√3
    ⇒ h =
    30√3
    3 - 1

    =
    30√3(√3 + 1)
    (√3 - 1)(√3 + 1)

    = 15(3 + √3) metre.

    Correct Option: B


    AB = Tower = h metre
    DC = 30 metre
    BD = x metre
    From ∆ABC,

    tan 45° =
    AB
    ⇒ 1 =
    h
    ⇒ h = x + 30 ......(i)
    BCx + 30

    From ∆ABD,
    tan 60° =
    AB
    ⇒ √3 =
    h
    BDx

    h = √3x
    ⇒ x =
    h
    .........(ii)
    3

    ∴ h = x + 30
    ⇒ h =
    h
    + 30
    3

    ⇒ (√3 + 1)h = 30√3
    ⇒ h =
    30√3
    3 - 1

    =
    30√3(√3 + 1)
    (√3 - 1)(√3 + 1)

    = 15(3 + √3) metre.


  1. If cosθ – sinθ = 2 sinθ, then cosθ + sinθ = ?









  1. View Hint View Answer Discuss in Forum

    cosθ – sinθ = 2 sinθ ..(i)
    cosθ + sinθ = x ....(ii)
    On squaring both the equations and adding.
    2 (cos²θ + sin²θ) = 2sin²θ + x²
    ⇒ x² = 2 – 2 sin²θ = 2 (1 – sin²θ) = 2cos²θ
    ⇒ x = √2cosθ

    Correct Option: C

    cosθ – sinθ = 2 sinθ ..(i)
    cosθ + sinθ = x ....(ii)
    On squaring both the equations and adding.
    2 (cos²θ + sin²θ) = 2sin²θ + x²
    ⇒ x² = 2 – 2 sin²θ = 2 (1 – sin²θ) = 2cos²θ
    ⇒ x = √2cosθ



  1. If cosθ + secθ = 2, then cos5θ + sec5θ= ?









  1. View Hint View Answer Discuss in Forum

    cosθ + secθ = 2

    ⇒ cosθ +
    1
    = 2
    cosθ

    ⇒ cos²θ – 2 cosθ + 1 = 0
    ⇒ (cosθ – 1)² = 0
    ⇒ cosθ = 1
    ∴ cos5θ + sec5θ = 1 + 1 = 2

    Correct Option: B

    cosθ + secθ = 2

    ⇒ cosθ +
    1
    = 2
    cosθ

    ⇒ cos²θ – 2 cosθ + 1 = 0
    ⇒ (cosθ – 1)² = 0
    ⇒ cosθ = 1
    ∴ cos5θ + sec5θ = 1 + 1 = 2


  1. If sin A =
    3
    and cos B =
    12
    , what is the value of
    tanA - tanB
    5131 + tanA tanB

    ; it being given that A and B are acute angles?









  1. View Hint View Answer Discuss in Forum

    sin A =
    3
    5

    ∴ cos A = √1 - sin²A
    = √ 1 -
    9
    25

    = √
    25 - 9
    = √
    16
    =
    4
    25255

    cos B =
    12
    13

    sin B = √1 - cos²B
    = √ 1 -
    144
    169

    = √ 1 -
    12
    ²
    13

    = √ 1 -
    144
    = √
    169 - 144
    = √
    25
    =
    5
    1691691695

    ∴ tanA =
    1
    =
    sinA =
    5
    3
    cosA
    4
    4
    5

    ∴ tanB =
    5
    =
    sinB =
    13
    5
    cosB
    12
    12
    13

    3
    -
    5
    tanB - tanB = 412
    1 + tanA.tanB 1 +
    3
    .
    5
    412

    =
    9 - 5
    12
    1 +
    5
    16

    =
    1
    3
    21
    16

    =
    1
    ×
    16
    =
    16
    32163

    Correct Option: D

    sin A =
    3
    5

    ∴ cos A = √1 - sin²A
    = √ 1 -
    9
    25

    = √
    25 - 9
    = √
    16
    =
    4
    25255

    cos B =
    12
    13

    sin B = √1 - cos²B
    = √ 1 -
    144
    169

    = √ 1 -
    12
    ²
    13

    = √ 1 -
    144
    = √
    169 - 144
    = √
    25
    =
    5
    1691691695

    ∴ tanA =
    1
    =
    sinA =
    5
    3
    cosA
    4
    4
    5

    ∴ tanB =
    5
    =
    sinB =
    13
    5
    cosB
    12
    12
    13

    3
    -
    5
    tanB - tanB = 412
    1 + tanA.tanB 1 +
    3
    .
    5
    412

    =
    9 - 5
    12
    1 +
    5
    16

    =
    1
    3
    21
    16

    =
    1
    ×
    16
    =
    16
    32163



  1. Find the value of sin²1° + sin²3° + sin²5°+ ...... sin²87° + sin²89°.









  1. View Hint View Answer Discuss in Forum

    sin 89° = sin (90° – 1°) = cos 1°
    sin 87° = sin (90° – 3°) = cos 3°
    ∴ sin² 1° + sin² 3° + .... + sin² 45° + .... + sin² 87° + sin² 89°
    = (sin² 1° + sin² 89°) + (sin² 3° + sin² 87°) + ..... to 22 terms + sin² 45°

    = (sin² 1° + cos² 1°) + (sin² 3° +cos² 3°) + ..... to 22 terms +
    1
    = 22 +
    1
    = 22
    1
    222

    Correct Option: B

    sin 89° = sin (90° – 1°) = cos 1°
    sin 87° = sin (90° – 3°) = cos 3°
    ∴ sin² 1° + sin² 3° + .... + sin² 45° + .... + sin² 87° + sin² 89°
    = (sin² 1° + sin² 89°) + (sin² 3° + sin² 87°) + ..... to 22 terms + sin² 45°

    = (sin² 1° + cos² 1°) + (sin² 3° +cos² 3°) + ..... to 22 terms +
    1
    = 22 +
    1
    = 22
    1
    222