Trigonometry


  1. Evaluate :
    tan²60° + 4cos²45° + 3sec²30° + 5cos²90°
    cosec 30° + sec 60° - cotsec²30°










  1. View Hint View Answer Discuss in Forum

    tan² 60° + 4cos² 45° + 3sec² 30° + 5cos² 90°
    cosec 30° + sec 60° – cot² 30°

    = (√3)² + 4 ×
    1
    ² + 3
    2
    ² + 5 × 0
    23
    2 + 2 - ((√3

    = 3 + 4 ×
    1
    +
    3 × 4
    + 0
    23
    4 - 3

    = 3 + 2 + 4 = 9

    Correct Option: B

    tan² 60° + 4cos² 45° + 3sec² 30° + 5cos² 90°
    cosec 30° + sec 60° – cot² 30°

    = (√3)² + 4 ×
    1
    ² + 3
    2
    ² + 5 × 0
    23
    2 + 2 - ((√3

    = 3 + 4 ×
    1
    +
    3 × 4
    + 0
    23
    4 - 3

    = 3 + 2 + 4 = 9


  1. If
    sin(x + y)
    =
    a + b
    , then the value of
    tan x
    is equal to
    sin(x - y)a - btan y










  1. View Hint View Answer Discuss in Forum

    Here,

    sin(x + y)
    =
    a + b
    sin(x - y)a - b

    Using componendo and dividendo both sides we get,
    sin(x + y) + sin(x - y)
    sin(x + y) - sin(x - y)

    =
    a + b + a - b
    a + b - (a - b)

    = 2sin
    (x + y + x - y)
    cos
    (x + y - x + y)
    22
    2sin
    (x + y - x + y)
    cos
    (x + y + x - y)
    22

    =
    2a
    2a

    ∵ sinC + sinD
    = 2sin
    C + D
    cos
    C - D
    sinC - sinD
    22

    = 2cos
    C + D
    sin
    C - D
    22

    sinx.cosy
    =
    a
    siny.cosxb

    tan x
    =
    a
    tan yb

    Correct Option: B

    Here,

    sin(x + y)
    =
    a + b
    sin(x - y)a - b

    Using componendo and dividendo both sides we get,
    sin(x + y) + sin(x - y)
    sin(x + y) - sin(x - y)

    =
    a + b + a - b
    a + b - (a - b)

    = 2sin
    (x + y + x - y)
    cos
    (x + y - x + y)
    22
    2sin
    (x + y - x + y)
    cos
    (x + y + x - y)
    22

    =
    2a
    2a

    ∵ sinC + sinD
    = 2sin
    C + D
    cos
    C - D
    sinC - sinD
    22

    = 2cos
    C + D
    sin
    C - D
    22

    sinx.cosy
    =
    a
    siny.cosxb

    tan x
    =
    a
    tan yb



  1. 2 (sin6θ + cos6θ) – 3 (sin4θ + cos4θ) + 1 = ?









  1. View Hint View Answer Discuss in Forum

    2 (sin6θ + cos6θ) – 3 (sin4θ + cos4θ) + 1
    = 2[(sin²θ)3 + (cos²θ)3] – 3 [(sin²θ)2 + (cos²θ)2] + 1
    = 2 (sin²θ + cos²θ) (sin4θ + cos4θ – sin²θ . cos²θ) – 3 [(sin²θ + cos²θ)² – 2sin²θ . cos²θ] + 1
    [∵ a³ + b³ = (a + b) (a² – ab + b²) ; a² + b² = (a + b)² – 2ab]
    = 2 sin4θ + 2 cos4θ – 2sin²θ . cos²θ – 3 + 6 sin²θ . cos²θ + 1
    = 2 [(sin²θ + cos²θ)2 – 2 sin²θ . cos²θ] – 3 + 4 sin²θ . cos²θ + 1
    = 2 – 4 sin²θ . cos²θ – 3 + 4 sin²θ cos²θ + 1 = 2 – 3 + 1
    = 0

    Correct Option: B

    2 (sin6θ + cos6θ) – 3 (sin4θ + cos4θ) + 1
    = 2[(sin²θ)3 + (cos²θ)3] – 3 [(sin²θ)2 + (cos²θ)2] + 1
    = 2 (sin²θ + cos²θ) (sin4θ + cos4θ – sin²θ . cos²θ) – 3 [(sin²θ + cos²θ)² – 2sin²θ . cos²θ] + 1
    [∵ a³ + b³ = (a + b) (a² – ab + b²) ; a² + b² = (a + b)² – 2ab]
    = 2 sin4θ + 2 cos4θ – 2sin²θ . cos²θ – 3 + 6 sin²θ . cos²θ + 1
    = 2 [(sin²θ + cos²θ)2 – 2 sin²θ . cos²θ] – 3 + 4 sin²θ . cos²θ + 1
    = 2 – 4 sin²θ . cos²θ – 3 + 4 sin²θ cos²θ + 1 = 2 – 3 + 1
    = 0


  1. If sinθ + sin²θ + sin³θ = 1, then, cos6θ – 4 cos4θ + 8 cos²θ = ?









  1. View Hint View Answer Discuss in Forum

    sinθ + sin²θ + sin³θ = 1
    ⇒ sinθ + sin³θ = 1 – sin²θ
    ⇒ sinθ (1 + sin²θ) = cos²θ
    ⇒ sin²θ (1 + sin²θ)² = cos4θ
    ⇒ (1 – cos²θ) {1 + (1 – cos²θ)}2= cos4θ
    ⇒ (1 – cos²θ) (2 – cos²θ)² = cos4θ
    ⇒ (1 – cos²θ) (4 – 4cos²θ + cos4θ) = cos4θ
    ⇒ 4 – 4cos²θ + cos4θ – 4cos²θ + 4cos4θ – cos6θ = cos4θ
    ⇒ –cos6θ + 4 cos4θ – 8 cos²θ + 4 = 0
    ⇒ cos6θ – 4cos4θ + 8cos²θ = 4

    Correct Option: C

    sinθ + sin²θ + sin³θ = 1
    ⇒ sinθ + sin³θ = 1 – sin²θ
    ⇒ sinθ (1 + sin²θ) = cos²θ
    ⇒ sin²θ (1 + sin²θ)² = cos4θ
    ⇒ (1 – cos²θ) {1 + (1 – cos²θ)}2= cos4θ
    ⇒ (1 – cos²θ) (2 – cos²θ)² = cos4θ
    ⇒ (1 – cos²θ) (4 – 4cos²θ + cos4θ) = cos4θ
    ⇒ 4 – 4cos²θ + cos4θ – 4cos²θ + 4cos4θ – cos6θ = cos4θ
    ⇒ –cos6θ + 4 cos4θ – 8 cos²θ + 4 = 0
    ⇒ cos6θ – 4cos4θ + 8cos²θ = 4



  1. The shadow of a vertical tower increases 10 metre, when the altitude of the sun changes from 45° to 30°. What is the height of tower ? (π = 1.73)









  1. View Hint View Answer Discuss in Forum


    AB = Tower = h Metre
    CD = 10 metre, AC = x metre
    (let)
    ∠BCA = 45°, ∠BDA = 30°
    In ∆ACB,

    tan 45° =
    AB
    AC

    ⇒ 1 =
    h
    x

    ⇒ h = x --- (i)
    In ∆DAB,
    tan 30° =
    AB
    AD

    1
    =
    h
    x + 107

    ⇒ x + 10 = √3h
    ⇒ h + 10 = √3h
    ⇒ h (√3 – 1) = 10
    ⇒ h =
    10
    3 – 1

    =
    10
    ×
    3 + 1
    3 – 13 + 1

    =
    10(√3 + 1)
    = 5(1.73 + 1)
    2

    = 13.65 metre

    Correct Option: B


    AB = Tower = h Metre
    CD = 10 metre, AC = x metre
    (let)
    ∠BCA = 45°, ∠BDA = 30°
    In ∆ACB,

    tan 45° =
    AB
    AC

    ⇒ 1 =
    h
    x

    ⇒ h = x --- (i)
    In ∆DAB,
    tan 30° =
    AB
    AD

    1
    =
    h
    x + 107

    ⇒ x + 10 = √3h
    ⇒ h + 10 = √3h
    ⇒ h (√3 – 1) = 10
    ⇒ h =
    10
    3 – 1

    =
    10
    ×
    3 + 1
    3 – 13 + 1

    =
    10(√3 + 1)
    = 5(1.73 + 1)
    2

    = 13.65 metre