- 
					 The shadow of a vertical tower increases 10 metre, when the altitude of the sun changes from 45° to 30°. What is the height of tower ? (π = 1.73)
- 
                        -  12.65 metre 
 
-  13.65 metre 
 
-  14.65 metre 
 
- 16.65 metre
 
-  12.65 metre 
Correct Option: B

AB = Tower = h Metre 
CD = 10 metre, AC = x metre 
(let) 
∠BCA = 45°, ∠BDA = 30° 
In ∆ACB,
| tan 45° = | ||
| AC | 
| ⇒ 1 = | ||
| x | 
⇒ h = x --- (i)
In ∆DAB,
| tan 30° = | ||
| AD | 
| ⇒ | = | |||
| √x + 10 | 7 | 
⇒ x + 10 = √3h
⇒ h + 10 = √3h
⇒ h (√3 – 1) = 10
| ⇒ h = | ||
| √3 – 1 | 
| = | × | |||
| √3 – 1 | √3 + 1 | 
| = | = 5(1.73 + 1) | |
| 2 | 
= 13.65 metre
 
	