Trigonometry


Trigonometry

Trigonometry is composed of two words. The first word trigono , which means - the triangle and the second word metry means - measurement. That is, the word trigonometry literally means - the science of triangle measurement or related to the sides and angles of the triangle.
In modern times , it is defined as that branch of mathematics which measuring the sides of the triangle and establishing relationships between the sides and the angles.
Now a days , trigonometry is used in various fields such as surveying , astronomy , navigation , physics , engineering etc.

Important Formulae and Results of Trigonometry:-

( Ⅰ )

1. 180° = π radian

2. 1° =
π
= 0.01745 radian
180

3. π =
Circumference of a circle
Diameter of the circle

π =
22
= 3.141 ( Approx. )
7

4. Angle =
Arc
⇒ θ =
L
Radius r

5. Each interior angle of a regular polygon of n sides =
( n - 2 )
x 180°
n

6. 1 right angle = 90°
1° = 60' ( 60 minutes ) and 1' = 60'' ( 60 seconds )

Trigonometric Ratios :-

( Ⅱ ) 1. Sinθ × Cosecθ = 1

⇒ Sinθ =
AB
=
1
BC Cosecθ

⇒ Cosecθ =
BC
=
1
AB Sinθ

2. Secθ × Cosθ = 1

⇒ Cosθ =
AC
=
1
BC Secθ

⇒ Secθ =
BC
=
1
AC Cosθ

-1 ≤ Cosθ ≤ 1 , Secθ ≤ -1 या Secθ ≥ 1

3. tanθ × Cotθ = 1

⇒ Cotθ =
AC
=
1
AB tanθ

⇒ tanθ =
AB
=
1
AC Cotθ

-∞ < tanθ < ∞ , -∞ < Cotθ < ∞

Note :- We can use [ PBP / HHB ] for finding the values of trigonometric ratios. where , P = Perpendicular , B = Base and H = Hypotenuse

Trigonometric Identities :-

1. Sin2θ + Cos2θ = 1
⇒ Sin2θ = 1 - Cos2θ
⇒ Cos2θ = 1 - Sin2θ

2. Sec2θ - tan2θ = 1
⇒ Sec2θ = 1 + tan2θ
⇒ tan2θ = Sec2θ - 1

3. Cosec2θ - Cot2θ = 1
⇒ Cosec2θ = 1 + Cot2θ
⇒ Cot2θ = Cosec2θ - 1

4. tanθ =
Sinθ
;
Cosθ

Cotθ =
Cosθ
Sinθ

Pythagoras Theorem :-

According to Pythagoras theorem , In right angle ΔABC ,( fig. 1 . )
( Hypotenuse )2 = ( Base )2 + ( Perpendicular )2
From figure , Hypotenuse = BC , Base = AC and Perpendicular = AB
( BC )2 = ( AC )2 + ( AB )2
⇒ BC = √( AC )² + ( AB )²

Some important values of Trigonometric Ratios :-

Trigonometric Ratios of Some specific angles

( ⅰ ) Sin15° =
( √3 - 1 )
2√2

Cos15° =
( √3 + 1 )
2√2

tan15° = 2 - √3

( ⅱ ) Sin18° =
( √5 - 1 )
= Cos72°
4

Cos18° =
( √10 + 2√5 )
= Sin72°
4

( ⅲ ) Cos36° =
( √5 + 1 )
= Sin54°
4

Sin36° =
( √10 - 2√5 )
= Cos54°
4

( ⅳ ) tan7
= ( √3 - √2 )( √2 - 1 )
2

Cot7
= ( √3 + √2 )( √2 + 1 )
2

Trigonometric ratios of complementary and supplementary angles of angle θ :-

Complementary angle :-

If the sum of any two given angles are 90° , then these angles are called complementary angle .

( ⅰ ) Trigonometric ratios of complementary angle :-

  • Sin(-θ) = -Sinθ
  • Cos(-θ) = Cosθ
  • tan(-θ) = -tanθ
  • Cot(-θ) = -Cotθ
  • Sec(-θ) = Secθ
  • Cosec(-θ) = -Cosecθ
  • Sin(90° - θ ) = Cosθ
  • Cos(90° - θ ) = Sinθ
  • tan(90° - θ ) = Cotθ
  • Cot(90° - θ ) = tanθ
  • Sec(90° - θ ) = Cosecθ
  • Cosec(90° - θ ) = Secθ
  • Sin(90° + θ ) = Cosθ
  • Cos(90° + θ ) = -Sinθ
  • tan(90° + θ ) = -Cotθ
  • Cot(90° + θ ) = -tanθ
  • Sec(90° + θ ) = -Cosecθ
  • Cosec(90° + θ ) = Secθ

Supplementary angle :-

If the sum of any two given angles are 180° , then these angles are called supplementary angle .

( ⅱ ) Trigonometric ratios of supplementary angle :-

  • Sin(180° - θ ) = Sinθ
  • Cos(180° - θ ) = -Cosθ
  • tan(180° - θ ) = -tanθ
  • Cot(180° - θ ) = -Cotθ
  • Sec(180° - θ ) = -Secθ
  • Cosec(180° - θ ) = Cosecθ
  • Sin(180° + θ ) = -Sinθ
  • Cos(180° + θ ) = -Cosθ
  • tan(180° + θ ) = tanθ
  • Cot(180° + θ ) = Cotθ
  • Sec(180° + θ ) = -Secθ
  • Cosec(180° + θ ) = -Cosecθ
  • Sin(270° - θ ) = -Cosθ
  • Cos(270° - θ ) = -Sinθ
  • tan(270° - θ ) = Cotθ
  • Cot(270° - θ ) = tanθ
  • Sec(270° - θ ) = -Cosecθ
  • Cosec(270° - θ ) = -Secθ
  • Sin(270° + θ ) = -Cosθ
  • Cos(270° + θ ) = Sinθ
  • tan(270° + θ ) = -Cotθ
  • Cot(270° + θ ) = -tanθ
  • Sec(270° + θ ) = Cosecθ
  • Cosec(270° + θ ) = -Secθ
  • Sin(360° - θ ) = -Sinθ
  • Cos(360° - θ ) = Cosθ
  • tan(360° - θ ) = -tanθ
  • Cot(360° - θ ) = -Cotθ
  • Sec(360° - θ ) = Secθ
  • Cosec(360° - θ ) = -Cosecθ
  • Sin(360° + θ ) = -Sinθ
  • Cos(360° + θ ) = Cosθ
  • tan(360° + θ ) = tanθ
  • Cot(360° + θ ) = Cotθ
  • Sec(360° + θ ) = Secθ
  • Cosec(360° + θ ) = -Cosecθ

Trigonometric formulae for the Sum / Difference of two angles :-

( ⅰ ) Sin( A + B ) = SinA.CosB + CosA.SinB
( ⅱ ) Sin( A - B ) = SinA.CosB - CosA.SinB
( ⅲ ) Cos( A + B ) = CosA.CosB - SinA.SinB
( ⅳ ) Cos( A - B ) = CosA.CosB + SinA.SinB

( ⅴ ) tan( A + B ) =
( tanA + tanB )
( 1 - tanA.tanB )

( ⅵ ) tan( A - B ) =
( tanA - tanB )
( 1 + tanA.tanB )

( ⅶ ) Cot( A + B ) =
( CotA.CotB - 1 )
( CotB + CotA )

( ⅷ ) Cot( A - B ) =
( CotA.CotB + 1 )
( CotB - CotA )

( ⅸ ) tan( A + B + C ) =
( tanA + tanB + tanC - tanA.tanB.tanC )
[ 1 - ( tanA.tanB + tanB.tanC + tanC.tanA ) ]

( ⅹ ) Sin( A + B ).Sin( A - B ) = Sin2A - Sin2B = Cos2B - Cos2A
( ⅺ ) Cos( A + B ).Cos( A - B ) = Cos2A - Sin2B = Cos2B - Sin2A

Formulae of Sum / Difference of Sine and Cosine :-

( ⅰ ) sinC + sinD = 2sin
(C + D)
.cos
(C - D)
2 2

( ⅱ ) sinC - sinD = 2cos
(C + D)
.sin
(C - D)
2 2

( ⅲ ) cosC + cosD = 2cos
(C + D)
.cos
(C - D)
2 2

( ⅳ ) cosC - cosD = 2sin
(C + D)
.sin
(D - C)
2 2

( ⅴ ) 2sinA.cosB = sin( A + B ) + sin( A - B )

( ⅵ ) 2cosA.sinB = sin( A + B ) - sin( A - B )

( ⅶ ) 2cosA.cosB = cos( A + B ) + cos( A - B )

( ⅷ ) 2sinA.sinB = cos( A - B ) - cos( A + B )

Trigonometric ratios of multiple angles :-

( ⅰ ) sin2A = 2sinA.sinB =
2tanA
( 1 + tan2A )

( ⅱ ) cos2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2sin2A =
( 1 - tan2A )
( 1 + tan2A )

( ⅲ ) tan2A =
2tanA
( 1 + tan2A )

( ⅳ ) sin2A =
( 1 - cos2A )
2

cos2A =
( 1 + cos2A )
2

( ⅴ ) sin3A = 3sinA - 4sin3A

( ⅵ ) cos3A = 4cos3A - 3cosA

( ⅶ ) cot3A =
( cot3A - 3cotA )
( 3cot2A - 1 )

( ⅷ ) tan3A =
( 3tanA - tan3A )
( 1 - 3tan2A )

( ⅸ ) tanA = √
( 1 - cos2A )
=
( 1 - cos2A )
( 1 + cos2A ) sin2A

Trigonometric ratios of sub-multiple angles :-

( ⅰ ) sinA = 2sin
A
cos
A
2 2

sinA =
2tan( A/2 )
[ 1 + tan2( A/2 ) ]

( ⅱ ) cosA = cos2
A
- sin2
A
= 2cos2
A
- 1 = 1 - 2sin2
A
2 2 2 2

cosA =
[ 1 - tan2( A/2 ) ]
[ 1 + tan2( A/2 ) ]

( ⅲ ) tanA =
2tan( A/2 )
[ 1 + tan2( A/2 ) ]

( ⅳ ) sin2
A
=
( 1 - cosA )
2 2

cos2
A
=
( 1 + cosA )
2 2

( ⅴ ) 2sin
A
= ± √1 + sinA ± √1 - sinA
2

( ⅵ ) 2cos
A
= ± √1 + sinA ∓ √1 - sinA
2

( ⅶ ) tan
A
= √
( 1 - cosA )
=
( 1 - cosA )
2 ( 1 + cosA ) sinA

Example 1 . What is the value of 150° ( in radian ) ?

Sol :- ∵ 1 radian =
180°
π

∴ 1° =
π
radian
180

⇒ 150° =
150
x π radian
180

⇒ 150° =
  radian
6

Example 2 . If cos A =
4
  , then find the value of sin A .
5

Sol :- We know that , sin2A + cos2A = 1
⇒ sin2A = 1 - cos2A

⇒ sin2A = 1 -
4
2  
5

⇒ sin2A = 1 -
16
  =
( 25 - 16 )
25 25

=
9
25

∴ sin A = √
9
=
3
25 5

Example 3 . If α + θ =
and tanθ = √3 , then what will be the value of tanα ?
12

Sol :- Given , tanθ = √3 = tan60°

⇒ θ = 60° =
π
3

∵ α + θ =
12

⇒ α +
π
=
3 12

⇒ α =
-
π
12 3

⇒ α =
(7π - 4π)
=
=
π
= 45°
12 12 4

⇒ α = 45°
∴ tanα = tan45° = 1

Example 4 . If , where 3θ and (θ - 2) are acute angles , then what is the value of θ ?
Sol :- Given that , sin3θ = cos(θ - 2)
⇒ sin3θ = sin[90° - (θ - 2)]
⇒ 3θ = [90° - (θ - 2)]
⇒ 4θ = 90° + 2 ⇒ 4θ = 92°

⇒ θ =
92°
= 23°
4

Hence the value of θ will be 23° .

Example 5 .The value of tan1°.tan2°.tan3°………tan88°.tan89° is -
Sol :- tan1°.tan2°.tan3°………tan88°.tan89° =
tan1°.tan2°.tan3°………tan(90° - 2°).tan(90° - 1°)
= tan1°.tan2°.tan3°………cot2° - .cot1°
= tan1°.cot1°.tan2°.cot2°…….tan45°
= 1.1………tan45° = tan45° = 1 { ∴ tanA°.cotA° = 1 }
∴ tan1°.tan2°.tan3°………tan88°.tan89° = 1

Example 6 . Find the value of cos210° .
Sol :- We know that cos(180° + θ) = -cosθ
cos210° = cos(180° + 30°)

-cos30° =
-√3
2

Example 7 . Find the value of sin22° + sin24° + sin26° + …………+ sin288° + sin290°
Sol :- sin22° + sin24° + sin26° + …………+ sin288° + sin290° = sin22° + sin24° + sin26° + …………+ sin2(90° - 2°) + sin290° [ ∴ sin2(90° - 2°) = cos22° ]
= sin22° + sin24° + sin26° + …………+ cos22° + 1
= ( sin22° + cos22° ) + ( sin24° + cos24° ) + …………. + 1
= 1 + 1 + …….. upto 22 terms + 1 = 22 + 1
∴ sin22° + sin24° + sin26° + …………+ sin288° + sin290° = 23