Trigonometry is composed of two words. The first word trigono , which means - the triangle and the second word metry means - measurement. That is, the word trigonometry literally means - the science of triangle measurement or related to the sides and angles of the triangle. In modern times , it is defined as that branch of mathematics which measuring the sides of the triangle and establishing relationships between the sides and the angles. Now a days , trigonometry is used in various fields such as surveying , astronomy , navigation , physics , engineering etc.
Important Formulae and Results of Trigonometry:-
( Ⅰ )
1. 180° = π radian
2. 1° =
π
= 0.01745 radian
180
3. π =
Circumference of a circle
Diameter of the circle
π =
22
= 3.141 ( Approx. )
7
4. Angle =
Arc
⇒ θ =
L
Radius
r
5. Each interior angle of a regular polygon of n sides =
According to Pythagoras theorem , In right angle ΔABC ,( fig. 1 . ) ( Hypotenuse )2 = ( Base )2 + ( Perpendicular )2 From figure , Hypotenuse = BC , Base = AC and Perpendicular = AB ( BC )2 = ( AC )2 + ( AB )2 ⇒ BC = √( AC )² + ( AB )²
Some important values of Trigonometric Ratios :-
Trigonometric Ratios of Some specific angles
( ⅰ ) Sin15° =
( √3 - 1 )
2√2
Cos15° =
( √3 + 1 )
2√2
tan15° = 2 - √3
( ⅱ ) Sin18° =
( √5 - 1 )
= Cos72°
4
Cos18° =
( √10 + 2√5 )
= Sin72°
4
( ⅲ ) Cos36° =
( √5 + 1 )
= Sin54°
4
Sin36° =
( √10 - 2√5 )
= Cos54°
4
( ⅳ ) tan7
1°
= ( √3 - √2 )( √2 - 1 )
2
Cot7
1°
= ( √3 + √2 )( √2 + 1 )
2
Trigonometric ratios of complementary and supplementary angles of angle θ :-
Complementary angle :-
If the sum of any two given angles are 90° , then these angles are called complementary angle.
( ⅰ ) Trigonometric ratios of complementary angle :-
Sin(-θ) = -Sinθ
Cos(-θ) = Cosθ
tan(-θ) = -tanθ
Cot(-θ) = -Cotθ
Sec(-θ) = Secθ
Cosec(-θ) = -Cosecθ
Sin(90° - θ ) = Cosθ
Cos(90° - θ ) = Sinθ
tan(90° - θ ) = Cotθ
Cot(90° - θ ) = tanθ
Sec(90° - θ ) = Cosecθ
Cosec(90° - θ ) = Secθ
Sin(90° + θ ) = Cosθ
Cos(90° + θ ) = -Sinθ
tan(90° + θ ) = -Cotθ
Cot(90° + θ ) = -tanθ
Sec(90° + θ ) = -Cosecθ
Cosec(90° + θ ) = Secθ
Supplementary angle :-
If the sum of any two given angles are 180° , then these angles are called supplementary angle .
( ⅱ ) Trigonometric ratios of supplementary angle :-
Sin(180° - θ ) = Sinθ
Cos(180° - θ ) = -Cosθ
tan(180° - θ ) = -tanθ
Cot(180° - θ ) = -Cotθ
Sec(180° - θ ) = -Secθ
Cosec(180° - θ ) = Cosecθ
Sin(180° + θ ) = -Sinθ
Cos(180° + θ ) = -Cosθ
tan(180° + θ ) = tanθ
Cot(180° + θ ) = Cotθ
Sec(180° + θ ) = -Secθ
Cosec(180° + θ ) = -Cosecθ
Sin(270° - θ ) = -Cosθ
Cos(270° - θ ) = -Sinθ
tan(270° - θ ) = Cotθ
Cot(270° - θ ) = tanθ
Sec(270° - θ ) = -Cosecθ
Cosec(270° - θ ) = -Secθ
Sin(270° + θ ) = -Cosθ
Cos(270° + θ ) = Sinθ
tan(270° + θ ) = -Cotθ
Cot(270° + θ ) = -tanθ
Sec(270° + θ ) = Cosecθ
Cosec(270° + θ ) = -Secθ
Sin(360° - θ ) = -Sinθ
Cos(360° - θ ) = Cosθ
tan(360° - θ ) = -tanθ
Cot(360° - θ ) = -Cotθ
Sec(360° - θ ) = Secθ
Cosec(360° - θ ) = -Cosecθ
Sin(360° + θ ) = -Sinθ
Cos(360° + θ ) = Cosθ
tan(360° + θ ) = tanθ
Cot(360° + θ ) = Cotθ
Sec(360° + θ ) = Secθ
Cosec(360° + θ ) = -Cosecθ
Trigonometric formulae for the Sum / Difference of two angles :-
( ⅰ ) Sin( A + B ) = SinA.CosB + CosA.SinB
( ⅱ ) Sin( A - B ) = SinA.CosB - CosA.SinB
( ⅲ ) Cos( A + B ) = CosA.CosB - SinA.SinB
( ⅳ ) Cos( A - B ) = CosA.CosB + SinA.SinB
( ⅴ ) tan( A + B ) =
( tanA + tanB )
( 1 - tanA.tanB )
( ⅵ ) tan( A - B ) =
( tanA - tanB )
( 1 + tanA.tanB )
( ⅶ ) Cot( A + B ) =
( CotA.CotB - 1 )
( CotB + CotA )
( ⅷ ) Cot( A - B ) =
( CotA.CotB + 1 )
( CotB - CotA )
( ⅸ ) tan( A + B + C ) =
( tanA + tanB + tanC - tanA.tanB.tanC )
[ 1 - ( tanA.tanB + tanB.tanC + tanC.tanA ) ]
( ⅹ ) Sin( A + B ).Sin( A - B ) = Sin2A - Sin2B = Cos2B - Cos2A
( ⅺ ) Cos( A + B ).Cos( A - B ) = Cos2A - Sin2B = Cos2B - Sin2A
Formulae of Sum / Difference of Sine and Cosine :-
Example 1 . What is the value of 150° ( in radian ) ?
Sol :- ∵ 1 radian =
180°
π
∴ 1° =
π
radian
180
⇒ 150° =
150
x π radian
180
⇒ 150° =
5π
radian
6
Example 2 . If cos A =
4
, then find the value of sin A .
5
Sol :- We know that , sin2A + cos2A = 1
⇒ sin2A = 1 - cos2A
⇒ sin2A = 1 -
4
2
5
⇒ sin2A = 1 -
16
=
( 25 - 16 )
25
25
=
9
25
∴ sin A = √
9
=
3
25
5
Example 3 . If α + θ =
7π
and tanθ = √3 , then what will be the value of tanα ?
12
Sol :- Given , tanθ = √3 = tan60°
⇒ θ = 60° =
π
3
∵ α + θ =
7π
12
⇒ α +
π
=
7π
3
12
⇒ α =
7π
-
π
12
3
⇒ α =
(7π - 4π)
=
3π
=
π
= 45°
12
12
4
⇒ α = 45°
∴ tanα = tan45° = 1
Example 4 . If , where 3θ and (θ - 2) are acute angles , then what is the value of θ ? Sol :- Given that , sin3θ = cos(θ - 2) ⇒ sin3θ = sin[90° - (θ - 2)]
⇒ 3θ = [90° - (θ - 2)]
⇒ 4θ = 90° + 2
⇒ 4θ = 92°
⇒ θ =
92°
= 23°
4
Hence the value of θ will be 23° .
Example 5 .The value of tan1°.tan2°.tan3°………tan88°.tan89° is - Sol :- tan1°.tan2°.tan3°………tan88°.tan89° = tan1°.tan2°.tan3°………tan(90° - 2°).tan(90° - 1°) = tan1°.tan2°.tan3°………cot2° - .cot1° = tan1°.cot1°.tan2°.cot2°…….tan45° = 1.1………tan45° = tan45° = 1 { ∴ tanA°.cotA° = 1 } ∴ tan1°.tan2°.tan3°………tan88°.tan89° = 1
Example 6 . Find the value of cos210° . Sol :- We know that cos(180° + θ) = -cosθ cos210° = cos(180° + 30°)