- 
					 If sin(x + y) = a + b , then the value of tan x is equal to sin(x - y) a - b tan y 
- 
                        -  2a b 
-  a b 
-  a 2b 
-  2a 3b 
 
-  
Correct Option: B
Here, 
| = | ||||
| sin(x - y) | a - b | 
Using componendo and dividendo both sides we get,
| sin(x + y) - sin(x - y) | 
| = | ||
| a + b - (a - b) | 
| = | 2sin |  |  | cos |  |  | ||
| 2 | 2 | |||||||
| 2sin |  |  | cos |  |  | |||
| 2 | 2 | |||||||
| = | ||
| 2a | 
∵ sinC + sinD
| = 2sin |  |  | cos |  |  | sinC - sinD | ||
| 2 | 2 | 
| = 2cos |  |  | sin |  |  | ||
| 2 | 2 | 
| ⇒ | = | ||
| siny.cosx | b | 
| ⇒ | = | ||
| tan y | b | 
 
	