Home » Aptitude » Trigonometry » Question
  1. If
    sin(x + y)
    =
    a + b
    , then the value of
    tan x
    is equal to
    sin(x - y)a - btan y

    1. 2a
      b
    2. a
      b
    3. a
      2b
    4. 2a
      3b
Correct Option: B

Here,

sin(x + y)
=
a + b
sin(x - y)a - b

Using componendo and dividendo both sides we get,
sin(x + y) + sin(x - y)
sin(x + y) - sin(x - y)

=
a + b + a - b
a + b - (a - b)

= 2sin
(x + y + x - y)
cos
(x + y - x + y)
22
2sin
(x + y - x + y)
cos
(x + y + x - y)
22

=
2a
2a

∵ sinC + sinD
= 2sin
C + D
cos
C - D
sinC - sinD
22

= 2cos
C + D
sin
C - D
22

sinx.cosy
=
a
siny.cosxb

tan x
=
a
tan yb



Your comments will be displayed only after manual approval.