-
If sin(x + y) = a + b , then the value of tan x is equal to sin(x - y) a - b tan y
-
-
2a b -
a b -
a 2b -
2a 3b
-
Correct Option: B
Here,
= | ||||
sin(x - y) | a - b |
Using componendo and dividendo both sides we get,
sin(x + y) - sin(x - y) |
= | ||
a + b - (a - b) |
= | 2sin | ![]() | ![]() | cos | ![]() | ![]() | ||
2 | 2 | |||||||
2sin | ![]() | ![]() | cos | ![]() | ![]() | |||
2 | 2 |
= | ||
2a |
∵ sinC + sinD
= 2sin | ![]() | ![]() | cos | ![]() | ![]() | sinC - sinD | ||
2 | 2 |
= 2cos | ![]() | ![]() | sin | ![]() | ![]() | ||
2 | 2 |
⇒ | = | ||
siny.cosx | b |
⇒ | = | ||
tan y | b |