Trigonometry
-  If cosx = – 3 and p < x < 3π , then the value of sin 2x will be 5 2 
- 
                        View Hint View Answer Discuss in Forum Here, cosx = – 3 and p < x < 3π 5 2 
 ⇒ x lies in third quadrant, and we know that in third quadrant only tan and cot are positive.
 Consider right angled ∆ABC, 
 Using pythagoras theorem,
 AC² = AB² + BC²
 ⇒ 5² = (–3)² + BC²
 16 = BC²
 ⇒ BC = 4
 We know that,
 sin2A = 2sinA × cosA
 ⇒ sin2x = 2 × sinx× cosx= 2 ×  - 4  × - 3 5 5 = 24 25 
 ∵ Here, sinq is –veCorrect Option: CHere, cosx = – 3 and p < x < 3π 5 2 
 ⇒ x lies in third quadrant, and we know that in third quadrant only tan and cot are positive.
 Consider right angled ∆ABC, 
 Using pythagoras theorem,
 AC² = AB² + BC²
 ⇒ 5² = (–3)² + BC²
 16 = BC²
 ⇒ BC = 4
 We know that,
 sin2A = 2sinA × cosA
 ⇒ sin2x = 2 × sinx× cosx= 2 ×  - 4  × - 3 5 5 = 24 25 
 ∵ Here, sinq is –ve
-  What is the value of tan 330° ?
- 
                        View Hint View Answer Discuss in Forum tan 330° = tan(360° – 30°) 
 = –tan 30°
 ∵ tan(360° - θ) - tanθ= - 1 √2 Correct Option: Dtan 330° = tan(360° – 30°) 
 = –tan 30°
 ∵ tan(360° - θ) - tanθ= - 1 √2 
-  The degree measure of  5π  will be 12 
- 
                        View Hint View Answer Discuss in Forum We know that, 1R =  180°  = 5π R =  180° × 5π  ° = 75° π 12 π 12 Correct Option: BWe know that, 1R =  180°  = 5π R =  180° × 5π  ° = 75° π 12 π 12 
-  If sin (2a + 45°) = cos (30° – a), where 0° < a < 90°, then the value of a is :
- 
                        View Hint View Answer Discuss in Forum sin (2a + 45°) = cos (30° – a) 
 ⇒ sin (2a + 45°) = sin {90° – (30° – a) }
 ⇒ sin (2a + 45°) = sin (60° + a)
 [∵ sin (90° – θ) = cosθ]
 ⇒ 2a + 45° = 60° + a
 ⇒ 2a – a = 60° - 45°
 ⇒ a = 15°Correct Option: Bsin (2a + 45°) = cos (30° – a) 
 ⇒ sin (2a + 45°) = sin {90° – (30° – a) }
 ⇒ sin (2a + 45°) = sin (60° + a)
 [∵ sin (90° – θ) = cosθ]
 ⇒ 2a + 45° = 60° + a
 ⇒ 2a – a = 60° - 45°
 ⇒ a = 15°
-  The least value of tan²x + cot²x is:
- 
                        View Hint View Answer Discuss in Forum The minimum value of a tan²x + b cot²x = 2√ab 
 ∴ The minimum value of tan²x + cot²x = 2Correct Option: BThe minimum value of a tan²x + b cot²x = 2√ab 
 ∴ The minimum value of tan²x + cot²x = 2
 
	