Trigonometry


  1. The value of 2cos
    π
    cos
    + cos
    + cos
    is
    13131313










  1. View Hint View Answer Discuss in Forum

    2cos
    π
    cos
    + cos
    + cos
    13131313

    = cos
    π
    +
    + cos
    π
    -
    + cos
    + cos
    131313131313

    ∵ 2 cosA cosB = cos (A + B) + cos (A – B)
    = cos
    10π
    + cos -
    + cos
    + cos
    13131313

    = cos
    10π
    + cos
    + cos
    + cos
    13131313

    ∵ cos(-θ) = cosθ
    = cos π -
    + cos π -
    + cos
    + cos
    13131313

    = - cos
    - cos
    + cos
    + cos
    13131313

    = 0

    Correct Option: B

    2cos
    π
    cos
    + cos
    + cos
    13131313

    = cos
    π
    +
    + cos
    π
    -
    + cos
    + cos
    131313131313

    ∵ 2 cosA cosB = cos (A + B) + cos (A – B)
    = cos
    10π
    + cos -
    + cos
    + cos
    13131313

    = cos
    10π
    + cos
    + cos
    + cos
    13131313

    ∵ cos(-θ) = cosθ
    = cos π -
    + cos π -
    + cos
    + cos
    13131313

    = - cos
    - cos
    + cos
    + cos
    13131313

    = 0


  1. If sinθ + cosθ = 1, then the value of sin2θ is equal to









  1. View Hint View Answer Discuss in Forum

    Here,
    sinθ + cosθ = 1
    Squaring on both sides, we get
    (sinθ + cosθ)² = 1
    sin²θ + cos²θ + 2sinθ × cosθ = 1
    1 + 2sinθ cosθ = 1
    2sinθ× cosθ = 0
    And we know that,
    sin2θ = 2sinθ cosθ
    ⇒ sin2θ = 0

    Correct Option: C

    Here,
    sinθ + cosθ = 1
    Squaring on both sides, we get
    (sinθ + cosθ)² = 1
    sin²θ + cos²θ + 2sinθ × cosθ = 1
    1 + 2sinθ cosθ = 1
    2sinθ× cosθ = 0
    And we know that,
    sin2θ = 2sinθ cosθ
    ⇒ sin2θ = 0



  1. The value of cos
    π
    - θ cos
    π
    - ∅ -sin
    π
    - θ sin
    π
    - ∅will be
    4444










  1. View Hint View Answer Discuss in Forum

    Here,

    cos
    π
    - θcos
    π
    - ∅
    44

    - sin
    π
    - θsin
    π
    - ∅ = ?
    44

    Let
    π
    - θ = A
    4

    π
    - ∅ = B
    4

    ⇒ cos
    π
    - θcos
    π
    - ∅
    44

    - sin
    π
    - θsin
    π
    - ∅ = ?
    44

    = cos
    π
    - θ +
    π
    - ∅
    44

    = cos
    π
    - θ - ∅
    2

    = cos
    π
    - (θ + ∅)
    2

    = sin (θ + ∅)
    ∵ cos
    π
    - θ = sinθ
    2

    Correct Option: B

    Here,

    cos
    π
    - θcos
    π
    - ∅
    44

    - sin
    π
    - θsin
    π
    - ∅ = ?
    44

    Let
    π
    - θ = A
    4

    π
    - ∅ = B
    4

    ⇒ cos
    π
    - θcos
    π
    - ∅
    44

    - sin
    π
    - θsin
    π
    - ∅ = ?
    44

    = cos
    π
    - θ +
    π
    - ∅
    44

    = cos
    π
    - θ - ∅
    2

    = cos
    π
    - (θ + ∅)
    2

    = sin (θ + ∅)
    ∵ cos
    π
    - θ = sinθ
    2


  1. If tan θ =
    x − y
    , the value of sinθ is equal to [If 0° ≤ θ ≤ 90°]
    x + y










  1. View Hint View Answer Discuss in Forum

    Here,

    tan θ =
    x - y
    x + y

    Consider ∆ABC,

    Using pythagoras theorem, we get
    AC² = AB² + BC²
    ⇒ AC² = (x + y)² + (x – y)²
    = x² + y² + 2xy + x² + y² – 2xy
    AC² = 2 (x² + y²)
    AC = √2(x² + y²)
    As θ lies in first quadrant,
    ∵ sinq will be +ve
    sinθ =
    BC
    AC

    sinθ =
    x - y
    2(x² + y²)

    Correct Option: A

    Here,

    tan θ =
    x - y
    x + y

    Consider ∆ABC,

    Using pythagoras theorem, we get
    AC² = AB² + BC²
    ⇒ AC² = (x + y)² + (x – y)²
    = x² + y² + 2xy + x² + y² – 2xy
    AC² = 2 (x² + y²)
    AC = √2(x² + y²)
    As θ lies in first quadrant,
    ∵ sinq will be +ve
    sinθ =
    BC
    AC

    sinθ =
    x - y
    2(x² + y²)



  1. If sinC + sinD = x, then the value of x is









  1. View Hint View Answer Discuss in Forum

    Here, sinC + sinD = x
    ⇒ x = sinC + sinD

    ⇒ x = 2.sin
    C + D
    .cos
    C - D
    22

    [∵ it is the basic formula of sinC + sinD]

    Correct Option: D

    Here, sinC + sinD = x
    ⇒ x = sinC + sinD

    ⇒ x = 2.sin
    C + D
    .cos
    C - D
    22

    [∵ it is the basic formula of sinC + sinD]