Trigonometry
-  The value of 2cos π cos 9π + cos 3π + cos 5π is 13 13 13 13 
- 
                        View Hint View Answer Discuss in Forum 2cos π cos 9π + cos 3π + cos 5π 13 13 13 13 = cos  π + 9π  + cos  π - 9π  + cos 3π + cos 5π 13 13 13 13 13 13 
 ∵ 2 cosA cosB = cos (A + B) + cos (A – B)= cos 10π + cos  - 8π  + cos 3π + cos 5π 13 13 13 13 = cos 10π + cos 8π + cos 3π + cos 5π 13 13 13 13 
 ∵ cos(-θ) = cosθ= cos  π - 3π  + cos  π - 5π  + cos 3π + cos 5π 13 13 13 13 = - cos 3π - cos 5π + cos 3π + cos 5π 13 13 13 13 
 = 0Correct Option: B2cos π cos 9π + cos 3π + cos 5π 13 13 13 13 = cos  π + 9π  + cos  π - 9π  + cos 3π + cos 5π 13 13 13 13 13 13 
 ∵ 2 cosA cosB = cos (A + B) + cos (A – B)= cos 10π + cos  - 8π  + cos 3π + cos 5π 13 13 13 13 = cos 10π + cos 8π + cos 3π + cos 5π 13 13 13 13 
 ∵ cos(-θ) = cosθ= cos  π - 3π  + cos  π - 5π  + cos 3π + cos 5π 13 13 13 13 = - cos 3π - cos 5π + cos 3π + cos 5π 13 13 13 13 
 = 0
-  If sinθ + cosθ = 1, then the value of sin2θ is equal to
- 
                        View Hint View Answer Discuss in Forum Here, 
 sinθ + cosθ = 1
 Squaring on both sides, we get
 (sinθ + cosθ)² = 1
 sin²θ + cos²θ + 2sinθ × cosθ = 1
 1 + 2sinθ cosθ = 1
 2sinθ× cosθ = 0
 And we know that,
 sin2θ = 2sinθ cosθ
 ⇒ sin2θ = 0Correct Option: CHere, 
 sinθ + cosθ = 1
 Squaring on both sides, we get
 (sinθ + cosθ)² = 1
 sin²θ + cos²θ + 2sinθ × cosθ = 1
 1 + 2sinθ cosθ = 1
 2sinθ× cosθ = 0
 And we know that,
 sin2θ = 2sinθ cosθ
 ⇒ sin2θ = 0
-  The value of cos  π - θ  cos  π - ∅  -sin  π - θ  sin  π - ∅  will be 4 4 4 4 
- 
                        View Hint View Answer Discuss in Forum Here, cos  π - θ  cos  π - ∅  4 4 - sin  π - θ  sin  π - ∅  = ? 4 4 
 Letπ - θ = A 4 π - ∅ = B 4 ⇒ cos  π - θ  cos  π - ∅  4 4 - sin  π - θ  sin  π - ∅  = ? 4 4 = cos  π - θ + π - ∅  4 4 = cos  π - θ - ∅  2 = cos  π - (θ + ∅)  2 
 = sin (θ + ∅)∵ cos  π - θ  = sinθ 2 Correct Option: BHere, cos  π - θ  cos  π - ∅  4 4 - sin  π - θ  sin  π - ∅  = ? 4 4 
 Letπ - θ = A 4 π - ∅ = B 4 ⇒ cos  π - θ  cos  π - ∅  4 4 - sin  π - θ  sin  π - ∅  = ? 4 4 = cos  π - θ + π - ∅  4 4 = cos  π - θ - ∅  2 = cos  π - (θ + ∅)  2 
 = sin (θ + ∅)∵ cos  π - θ  = sinθ 2 
-  If tan θ = x − y , the value of sinθ is equal to [If 0° ≤ θ ≤ 90°] x + y 
- 
                        View Hint View Answer Discuss in Forum Here, tan θ = x - y x + y 
 Consider ∆ABC, 
 Using pythagoras theorem, we get
 AC² = AB² + BC²
 ⇒ AC² = (x + y)² + (x – y)²
 = x² + y² + 2xy + x² + y² – 2xy
 AC² = 2 (x² + y²)
 AC = √2(x² + y²)
 As θ lies in first quadrant,
 ∵ sinq will be +vesinθ = BC AC sinθ = x - y √2(x² + y²) Correct Option: AHere, tan θ = x - y x + y 
 Consider ∆ABC, 
 Using pythagoras theorem, we get
 AC² = AB² + BC²
 ⇒ AC² = (x + y)² + (x – y)²
 = x² + y² + 2xy + x² + y² – 2xy
 AC² = 2 (x² + y²)
 AC = √2(x² + y²)
 As θ lies in first quadrant,
 ∵ sinq will be +vesinθ = BC AC sinθ = x - y √2(x² + y²) 
-  If sinC + sinD = x, then the value of x is
- 
                        View Hint View Answer Discuss in Forum Here, sinC + sinD = x 
 ⇒ x = sinC + sinD⇒ x = 2.sin  C + D  .cos  C - D  2 2 
 [∵ it is the basic formula of sinC + sinD]Correct Option: DHere, sinC + sinD = x 
 ⇒ x = sinC + sinD⇒ x = 2.sin  C + D  .cos  C - D  2 2 
 [∵ it is the basic formula of sinC + sinD]
 
	