- 
					 If tan θ = x − y , the value of sinθ is equal to [If 0° ≤ θ ≤ 90°] x + y 
- 
                        -  x − y √2(x2 + y2) 
-  x + y √2(x2 + y2) 
-  x + y √2(x2 − y2) 
-  x − y √2(x2 − y2) 
 
-  
Correct Option: A
Here,
| tan θ = | ||
| x + y | 
Consider ∆ABC,

Using pythagoras theorem, we get
AC² = AB² + BC²
⇒ AC² = (x + y)² + (x – y)²
= x² + y² + 2xy + x² + y² – 2xy
AC² = 2 (x² + y²)
AC = √2(x² + y²)
As θ lies in first quadrant,
∵ sinq will be +ve
| sinθ = | ||
| AC | 
| sinθ = | ||
| √2(x² + y²) | 
 
	