Trigonometry


  1. What is the value of sin 240° ?









  1. View Hint View Answer Discuss in Forum

    sin 240° = sin(180° + 60°)
    = – sin 60° [∵ sin(180° + θ) = – sinθ]

    = -
    3
    2

    Correct Option: B

    sin 240° = sin(180° + 60°)
    = – sin 60° [∵ sin(180° + θ) = – sinθ]

    = -
    3
    2


  1. If cot (A + B) = x, then value of x is









  1. View Hint View Answer Discuss in Forum

    We know that,

    cot (A + B) =
    cotA.cotB – 1
    cotA + cotB

    ⇒ x =
    cotA.cotB – 1
    cotA + cotB

    Correct Option: A

    We know that,

    cot (A + B) =
    cotA.cotB – 1
    cotA + cotB

    ⇒ x =
    cotA.cotB – 1
    cotA + cotB



  1. What is the value of cos
    ?
    4










  1. View Hint View Answer Discuss in Forum

    cos
    = cos2π -
    π
    = cos
    π
    444

    ∵ cos (2π – θ) = cosθ
    =
    1
    2

    Correct Option: D

    cos
    = cos2π -
    π
    = cos
    π
    444

    ∵ cos (2π – θ) = cosθ
    =
    1
    2


  1. What is the value of tan
    sin
    ?
    66










  1. View Hint View Answer Discuss in Forum

    tan
    .sin
    66

    = tanπ -
    π
    .sinπ +
    π
    66

    [∵ tan (180° – θ) = –tanθ sin (180° + θ) = –sinθ]
    = - tan
    π
    - sin
    π
    66

    = tan
    π
    × sin
    π
    66

    =
    1
    ×
    1
    32

    =
    1
    2√3

    Correct Option: C

    tan
    .sin
    66

    = tanπ -
    π
    .sinπ +
    π
    66

    [∵ tan (180° – θ) = –tanθ sin (180° + θ) = –sinθ]
    = - tan
    π
    - sin
    π
    66

    = tan
    π
    × sin
    π
    66

    =
    1
    ×
    1
    32

    =
    1
    2√3



  1. If sinx – cosx = 1, where ‘x’ is an acute angle, the value of (sinx + cosx) is :









  1. View Hint View Answer Discuss in Forum

    sinx – cosx = 1 ..... (i)
    sinx + cosx = y ..... (ii)
    On squaring and adding both equations,
    sin²x + cos²x – 2sinx.cosx + sin²x + cos²x + 2sinx . cosx
    = 1 + y²
    ⇒ 1 + 1 = 1 + y²
    ⇒ y² = 1 ⇒ y = 1

    Correct Option: B

    sinx – cosx = 1 ..... (i)
    sinx + cosx = y ..... (ii)
    On squaring and adding both equations,
    sin²x + cos²x – 2sinx.cosx + sin²x + cos²x + 2sinx . cosx
    = 1 + y²
    ⇒ 1 + 1 = 1 + y²
    ⇒ y² = 1 ⇒ y = 1