Trigonometry


  1. If tan (a – b) = 1, sec (a + b) = 2/√3 and α, β are positive, then the smallest value of a is :









  1. View Hint View Answer Discuss in Forum

    tan (α – β) = 1 = tan 45°
    ⇒ α – β = 45° ..... (i)

    sec (α + β) =
    2
    = sec 30°
    3

    ⇒ α + β = 30° ..... (ii)
    On adding (i) and (ii),
    2α = 45° + 30° = 75°
    ⇒ a =
    75
    = 37
    22

    Correct Option: D

    tan (α – β) = 1 = tan 45°
    ⇒ α – β = 45° ..... (i)

    sec (α + β) =
    2
    = sec 30°
    3

    ⇒ α + β = 30° ..... (ii)
    On adding (i) and (ii),
    2α = 45° + 30° = 75°
    ⇒ a =
    75
    = 37
    22


  1. If tanθ + cotθ = 2, then the value of (tannθ + cotnθ) is :









  1. View Hint View Answer Discuss in Forum

    tanθ + cotθ = 2

    ⇒ tanθ +
    1
    = 2
    tanθ

    tan²θ + 1
    = 2
    tanθ

    → tan²θ + 1 = 2 tanθ
    ⇒ tan²θ – 2 tanθ + 1 = 0
    ⇒ (tanθ – 1)2 = 0
    ⇒ tanθ – 1 = 0
    ⇒ tanq = 1
    ∴ cotθ = 1
    ∴ tannθ + cotnθ = 1 + 1 = 2

    Correct Option: D

    tanθ + cotθ = 2

    ⇒ tanθ +
    1
    = 2
    tanθ

    tan²θ + 1
    = 2
    tanθ

    → tan²θ + 1 = 2 tanθ
    ⇒ tan²θ – 2 tanθ + 1 = 0
    ⇒ (tanθ – 1)2 = 0
    ⇒ tanθ – 1 = 0
    ⇒ tanq = 1
    ∴ cotθ = 1
    ∴ tannθ + cotnθ = 1 + 1 = 2



  1. If cosx = siny and cot ( x – 40°) = tan (50° – y), then the values of x and y are :









  1. View Hint View Answer Discuss in Forum

    cosx = siny
    ⇒ cosx = cos (90° – y)
    ⇒ x = 90° – y
    [∵ cos (90° – θ = sinθ)]
    ⇒ x + y = 90° .... (i)
    Again,
    cot (x – 40°) = tan (50° – y)
    ⇒ (cot (x – 40°) = cot {90° – (50° – y)}
    [∵ cot (90° – θ) = tanθ]
    ⇒ x – 40° = 90° – 50° + y
    ⇒ x – 40 = 40 + y (i)
    ⇒ x – y = 40 + 40 = 80°
    (ii) On adding equations (i) and (ii),
    x + y + x – y = 90° + 80°
    ⇒ 2x = 170°

    ⇒ x =
    170°
    = 85°
    2

    From equation (i),
    ⇒ 85° + y = 90°
    ⇒ y = 90° – 85° = 5°

    Correct Option: C

    cosx = siny
    ⇒ cosx = cos (90° – y)
    ⇒ x = 90° – y
    [∵ cos (90° – θ = sinθ)]
    ⇒ x + y = 90° .... (i)
    Again,
    cot (x – 40°) = tan (50° – y)
    ⇒ (cot (x – 40°) = cot {90° – (50° – y)}
    [∵ cot (90° – θ) = tanθ]
    ⇒ x – 40° = 90° – 50° + y
    ⇒ x – 40 = 40 + y (i)
    ⇒ x – y = 40 + 40 = 80°
    (ii) On adding equations (i) and (ii),
    x + y + x – y = 90° + 80°
    ⇒ 2x = 170°

    ⇒ x =
    170°
    = 85°
    2

    From equation (i),
    ⇒ 85° + y = 90°
    ⇒ y = 90° – 85° = 5°


  1. The value of cosec²60°+ sec²60° – cot²60° + tan²30° will be









  1. View Hint View Answer Discuss in Forum

    cosec²60° + sec²60° – cot²60° + tan²30°

    =
    2
    ² + (2)² -
    1
    ² +
    1
    ²
    333

    =
    4
    + 4 =
    4 + 12
    =
    16
    = 5
    1
    3333

    Correct Option: C

    cosec²60° + sec²60° – cot²60° + tan²30°

    =
    2
    ² + (2)² -
    1
    ² +
    1
    ²
    333

    =
    4
    + 4 =
    4 + 12
    =
    16
    = 5
    1
    3333



  1. If sinθ + cosecθ = 2, the value of sinnq + cosecnθ is :









  1. View Hint View Answer Discuss in Forum

    sinθ + cosecθ = 2

    ⇒ sinθ +
    1
    = 2
    sinθ

    sinθ + 1
    = 2
    sinθ

    ⇒ sin²θ + 1 = 2 sinθ
    ⇒ sin²θ – 2sinθ + 1 = 0
    ⇒ (sinθ – 1)2 = 0
    ⇒ sinθ – 1 = 0
    ⇒ sinθ – 1
    ∴ cosecθ = 1
    ∴ sinnθ + cosecnθ = 1 + 1 = 2

    Correct Option: C

    sinθ + cosecθ = 2

    ⇒ sinθ +
    1
    = 2
    sinθ

    sinθ + 1
    = 2
    sinθ

    ⇒ sin²θ + 1 = 2 sinθ
    ⇒ sin²θ – 2sinθ + 1 = 0
    ⇒ (sinθ – 1)2 = 0
    ⇒ sinθ – 1 = 0
    ⇒ sinθ – 1
    ∴ cosecθ = 1
    ∴ sinnθ + cosecnθ = 1 + 1 = 2