Trigonometry
-  What is the value of tan 56° ?
- 
                        View Hint View Answer Discuss in Forum tan 56° = tan(45° + 11°) = tan 45° + tan 11° 1 - tan45° tan11° ∵ tan (A + B) = tanA + tanB &becaose; tan 45° = 1 1 - tanA tanB = 1 + tan 11° 1 - tan 11° = 1 + sin 11° cos 11° 1 - sin 11° cos 11° = cos 11° + sin 11° cos 11° - sin 11° Correct Option: Btan 56° = tan(45° + 11°) = tan 45° + tan 11° 1 - tan45° tan11° ∵ tan (A + B) = tanA + tanB &becaose; tan 45° = 1 1 - tanA tanB = 1 + tan 11° 1 - tan 11° = 1 + sin 11° cos 11° 1 - sin 11° cos 11° = cos 11° + sin 11° cos 11° - sin 11° 
-  The value of 3cosθ + cos3θ is equal to 3sinθ - sin3θ 
- 
                        View Hint View Answer Discuss in Forum 3cosθ + cos3θ 3sinθ - sin3θ = 3cosθ + 4 cos³θ - cos3θ 3sinθ - (3sinθ - 4sin³θ) 
 ∵ cos3θ = 4cos³θ – 3cosθ
 sin3θ = 3sinθ – 4sin³θ= 4cos³θ = cot³θ 4sin³θ Correct Option: B3cosθ + cos3θ 3sinθ - sin3θ = 3cosθ + 4 cos³θ - cos3θ 3sinθ - (3sinθ - 4sin³θ) 
 ∵ cos3θ = 4cos³θ – 3cosθ
 sin3θ = 3sinθ – 4sin³θ= 4cos³θ = cot³θ 4sin³θ 
-  The value of sin 5π sin π is 12 12 
- 
                        View Hint View Answer Discuss in Forum sin 5π .sin π 12 12 = 2 ×  2sin 5π sin π  2 12 12 = 1  cos  5π - π  - cos  5π + π   2 12 12 12 12 
 ∵ 2sinA sinB = cos(A -B) - cos(A +B)= 1  cos  4π  - cos  6π   2 12 12 = 1  cos  π  - cos  π   2 3 2 = 1 × 1 2 2 = 1 4 Correct Option: Asin 5π .sin π 12 12 = 2 ×  2sin 5π sin π  2 12 12 = 1  cos  5π - π  - cos  5π + π   2 12 12 12 12 
 ∵ 2sinA sinB = cos(A -B) - cos(A +B)= 1  cos  4π  - cos  6π   2 12 12 = 1  cos  π  - cos  π   2 3 2 = 1 × 1 2 2 = 1 4 
-  The value of = cos(π + x) cos( -x) sin(π - x)cos  1 - cosB  2 
- 
                        View Hint View Answer Discuss in Forum = cos(π + x) cos( -x) sin(π - x)cos  1 - cosB  2 = - cosx .cos x sinx(- sinx) 
 ∵ cos(π + θ) = – cosθ
 cos(– θ) = cosθ
 sin(π – θ) = – sinθ=  cos x  ×  cos x  sinx sinx 
 = cot x × cotx
 = cot²x.Correct Option: C= cos(π + x) cos( -x) sin(π - x)cos  1 - cosB  2 = - cosx .cos x sinx(- sinx) 
 ∵ cos(π + θ) = – cosθ
 cos(– θ) = cosθ
 sin(π – θ) = – sinθ=  cos x  ×  cos x  sinx sinx 
 = cot x × cotx
 = cot²x.
-  The value of = sin 50° + cos70° -2tan² 225° is equal to sin 130° cos 110° 
- 
                        View Hint View Answer Discuss in Forum = sin 50° + cos70° -2tan² 225° sin 130° cos 110° = sin 50° + cos70° - 2[tan (180° - 45°)]² sin (180° - 50°) cos (180° - 70°) = sin 50° + cos 70° -2tan² 45° sin 50°) - cos 70°) 
 ∵ sin(180° – θ) = sinθ
 cos(180° – θ) = – cosθ
 tan(180° + θ) = tanθ
 = 1 – 1 – 2 = –2Correct Option: B= sin 50° + cos70° -2tan² 225° sin 130° cos 110° = sin 50° + cos70° - 2[tan (180° - 45°)]² sin (180° - 50°) cos (180° - 70°) = sin 50° + cos 70° -2tan² 45° sin 50°) - cos 70°) 
 ∵ sin(180° – θ) = sinθ
 cos(180° – θ) = – cosθ
 tan(180° + θ) = tanθ
 = 1 – 1 – 2 = –2
 
	