Trigonometry


  1. What is the value of tan 56° ?









  1. View Hint View Answer Discuss in Forum

    tan 56° = tan(45° + 11°) =
    tan 45° + tan 11°
    1 - tan45° tan11°

    ∵ tan (A + B) =
    tanA + tanB
    &becaose; tan 45° = 1
    1 - tanA tanB

    =
    1 + tan 11°
    1 - tan 11°

    = 1 +
    sin 11°
    cos 11°
    1 -
    sin 11°
    cos 11°

    =
    cos 11° + sin 11°
    cos 11° - sin 11°

    Correct Option: B

    tan 56° = tan(45° + 11°) =
    tan 45° + tan 11°
    1 - tan45° tan11°

    ∵ tan (A + B) =
    tanA + tanB
    &becaose; tan 45° = 1
    1 - tanA tanB

    =
    1 + tan 11°
    1 - tan 11°

    = 1 +
    sin 11°
    cos 11°
    1 -
    sin 11°
    cos 11°

    =
    cos 11° + sin 11°
    cos 11° - sin 11°


  1. The value of
    3cosθ + cos3θ
    is equal to
    3sinθ - sin3θ










  1. View Hint View Answer Discuss in Forum

    3cosθ + cos3θ
    3sinθ - sin3θ

    =
    3cosθ + 4 cos³θ - cos3θ
    3sinθ - (3sinθ - 4sin³θ)

    ∵ cos3θ = 4cos³θ – 3cosθ
    sin3θ = 3sinθ – 4sin³θ
    =
    4cos³θ
    = cot³θ
    4sin³θ

    Correct Option: B

    3cosθ + cos3θ
    3sinθ - sin3θ

    =
    3cosθ + 4 cos³θ - cos3θ
    3sinθ - (3sinθ - 4sin³θ)

    ∵ cos3θ = 4cos³θ – 3cosθ
    sin3θ = 3sinθ – 4sin³θ
    =
    4cos³θ
    = cot³θ
    4sin³θ



  1. The value of sin
    sin
    π
    is
    1212










  1. View Hint View Answer Discuss in Forum

    sin
    .sin
    π
    1212

    =
    2
    × 2sin
    sin
    π
    21212

    =
    1
    cos
    -
    π
    - cos
    +
    π
    212121212

    ∵ 2sinA sinB = cos(A -B) - cos(A +B)
    =
    1
    cos
    - cos
    21212

    =
    1
    cos
    π
    - cos
    π
    232

    =
    1
    ×
    1
    22

    =
    1
    4

    Correct Option: A

    sin
    .sin
    π
    1212

    =
    2
    × 2sin
    sin
    π
    21212

    =
    1
    cos
    -
    π
    - cos
    +
    π
    212121212

    ∵ 2sinA sinB = cos(A -B) - cos(A +B)
    =
    1
    cos
    - cos
    21212

    =
    1
    cos
    π
    - cos
    π
    232

    =
    1
    ×
    1
    22

    =
    1
    4


  1. The value of =
    cos(π + x) cos( -x)
    sin(π - x)cos
    1 - cosB
    2









  1. View Hint View Answer Discuss in Forum

    =
    cos(π + x) cos( -x)
    sin(π - x)cos
    1 - cosB
    2

    =
    - cosx .cos x
    sinx(- sinx)

    ∵ cos(π + θ) = – cosθ
    cos(– θ) = cosθ
    sin(π – θ) = – sinθ
    =
    cos x
    ×
    cos x
    sinxsinx

    = cot x × cotx
    = cot²x.

    Correct Option: C

    =
    cos(π + x) cos( -x)
    sin(π - x)cos
    1 - cosB
    2

    =
    - cosx .cos x
    sinx(- sinx)

    ∵ cos(π + θ) = – cosθ
    cos(– θ) = cosθ
    sin(π – θ) = – sinθ
    =
    cos x
    ×
    cos x
    sinxsinx

    = cot x × cotx
    = cot²x.



  1. The value of =
    sin 50°
    +
    cos70°
    -2tan² 225° is equal to
    sin 130°cos 110°










  1. View Hint View Answer Discuss in Forum

    =
    sin 50°
    +
    cos70°
    -2tan² 225°
    sin 130°cos 110°

    =
    sin 50°
    +
    cos70°
    - 2[tan (180° - 45°)]²
    sin (180° - 50°)cos (180° - 70°)

    =
    sin 50°
    +
    cos 70°
    -2tan² 45°
    sin 50°)- cos 70°)

    ∵ sin(180° – θ) = sinθ
    cos(180° – θ) = – cosθ
    tan(180° + θ) = tanθ
    = 1 – 1 – 2 = –2

    Correct Option: B

    =
    sin 50°
    +
    cos70°
    -2tan² 225°
    sin 130°cos 110°

    =
    sin 50°
    +
    cos70°
    - 2[tan (180° - 45°)]²
    sin (180° - 50°)cos (180° - 70°)

    =
    sin 50°
    +
    cos 70°
    -2tan² 45°
    sin 50°)- cos 70°)

    ∵ sin(180° – θ) = sinθ
    cos(180° – θ) = – cosθ
    tan(180° + θ) = tanθ
    = 1 – 1 – 2 = –2