Trigonometry
-  The value of (cos 53° – sin 37°) is
- 
                        View Hint View Answer Discuss in Forum cos53° – sin37° 
 = cos (90° – 37°) – sin37°
 = sin37° – sin37° = 0Correct Option: Acos53° – sin37° 
 = cos (90° – 37°) – sin37°
 = sin37° – sin37° = 0
-  If cosecθ + sinθ = 5/2, then the value of (cosecθ – sinθ) is :
- 
                        View Hint View Answer Discuss in Forum cosecθ + sinθ = 5 2 ⇒ 1 + sinθ = 5 2 sinθ ⇒ 1 + sinθ = 5 2 sinθ 
 ⇒ 2 sin²θ + 2 = 5sinθ
 ⇒ 2 sin2θ – 5 sinθ + 2 = 0
 ⇒ 2 sin2θ – 4 sinθ – sinθ + 2 = 0
 ⇒ 2 sinθ (sinθ – 2) – 1 (sinθ – 2) = 0
 ⇒ (2 sinθ – 1) (sinθ – 2) = 0
 ⇒ 2 sinθ – 1 = 0
 ⇒ 2 sinθ = 1⇒ sinθ = 1 because sinθ ≠ 2 2 
 ⇒ cosecθ = 2∴ cosecθ – sinθ = 2 – 1 = 3 2 2 Correct Option: Bcosecθ + sinθ = 5 2 ⇒ 1 + sinθ = 5 2 sinθ ⇒ 1 + sinθ = 5 2 sinθ 
 ⇒ 2 sin²θ + 2 = 5sinθ
 ⇒ 2 sin2θ – 5 sinθ + 2 = 0
 ⇒ 2 sin2θ – 4 sinθ – sinθ + 2 = 0
 ⇒ 2 sinθ (sinθ – 2) – 1 (sinθ – 2) = 0
 ⇒ (2 sinθ – 1) (sinθ – 2) = 0
 ⇒ 2 sinθ – 1 = 0
 ⇒ 2 sinθ = 1⇒ sinθ = 1 because sinθ ≠ 2 2 
 ⇒ cosecθ = 2∴ cosecθ – sinθ = 2 – 1 = 3 2 2 
-  The value of 2tan 53° - cot 80° is : cot37 ° tan 10 ° 
- 
                        View Hint View Answer Discuss in Forum 2tan 53° - cot 80° cot 37° tan 10° = 2tan (90° - 37°) - cot (90° - 10°) cot 37° tan 10° = 2cot 37° - tan 10° cot 37° tan 10° 
 = 2 – 1 = 1Correct Option: C2tan 53° - cot 80° cot 37° tan 10° = 2tan (90° - 37°) - cot (90° - 10°) cot 37° tan 10° = 2cot 37° - tan 10° cot 37° tan 10° 
 = 2 – 1 = 1
-  The value of cot 10°. cot 20°. cot 60°. cot 70°. cot 80° is :
- 
                        View Hint View Answer Discuss in Forum Expression = cot10°.cot20°.cot60°.cot70°.cot80° = (cot10°.cot80°) (cot20°. cot70°).cot60° = {cot10°.cot (90°–10°)} {cot20°.cot(90° – 20°)}. 1 = (cot10°.tan10°)(cot20°.tan20°). 1 √3 √3 = 1.1 1 = 1 √3 √3 
 [∵ cot (90° – θ) = tanθ; tanθ.cotθ = 1]Correct Option: DExpression = cot10°.cot20°.cot60°.cot70°.cot80° = (cot10°.cot80°) (cot20°. cot70°).cot60° = {cot10°.cot (90°–10°)} {cot20°.cot(90° – 20°)}. 1 = (cot10°.tan10°)(cot20°.tan20°). 1 √3 √3 = 1.1 1 = 1 √3 √3 
 [∵ cot (90° – θ) = tanθ; tanθ.cotθ = 1]
-  If 7sin²θ + 3cos²θ = 4, and 0° < θ < 90°, then the value of tanθ is :
- 
                        View Hint View Answer Discuss in Forum 7 sin²θ + 3 cos²θ = 4 
 On dividing by cos²θ,7 sin²θ + 3 cos²θ = 4 cos²θ cos²θ cos²θ 
 ⇒ 7tan²θ + 3 = 4 sec²θ = 4 (1 + tan²θ)
 ⇒ 7tan²θ + 3 = 4 + 4 tan2θ
 ⇒ 7tan²θ – 4 tan2θ = 4 – 3
 ⇒ 3tan²θ = 1⇒ tan²θ = 1 3 ⇒ tan²θ = 1 √3 Correct Option: B7 sin²θ + 3 cos²θ = 4 
 On dividing by cos²θ,7 sin²θ + 3 cos²θ = 4 cos²θ cos²θ cos²θ 
 ⇒ 7tan²θ + 3 = 4 sec²θ = 4 (1 + tan²θ)
 ⇒ 7tan²θ + 3 = 4 + 4 tan2θ
 ⇒ 7tan²θ – 4 tan2θ = 4 – 3
 ⇒ 3tan²θ = 1⇒ tan²θ = 1 3 ⇒ tan²θ = 1 √3 
 
	