Trigonometry
-  If cos 21° = x/y , then (cosec 21° – cos 69°) is equal to
- 
                        View Hint View Answer Discuss in Forum cos 21° = x/y 
 ∴ cos 69° = cos (90° – 21°)
 = sin 21°= √1 - cos² 21° = √1 - x² = √y² - x² y² y ∴ cosec 21° = y √y² - x² 
 ∴ cosec 21° – cos 69°= y = √y² - x² √y² - x² y = y² - (y² - x²) = x² y√y² - x² y√y² - x² Correct Option: Acos 21° = x/y 
 ∴ cos 69° = cos (90° – 21°)
 = sin 21°= √1 - cos² 21° = √1 - x² = √y² - x² y² y ∴ cosec 21° = y √y² - x² 
 ∴ cosec 21° – cos 69°= y = √y² - x² √y² - x² y = y² - (y² - x²) = x² y√y² - x² y√y² - x² 
-  If α + β = 90° and α : β = 2 : 1, then the ratio of cosα to cosβ is :
- 
                        View Hint View Answer Discuss in Forum α : β = 2 : 1 
 Sum of the terms of ratio
 = 2 + 1 = 3
 α + β = 90°∴ α = 2 × 90° = 60° 3 
 β = 30°∴ cosα = cos 60° = 1/2 cosβ cos 60° √3/2 
 = 1 : √3Correct Option: Aα : β = 2 : 1 
 Sum of the terms of ratio
 = 2 + 1 = 3
 α + β = 90°∴ α = 2 × 90° = 60° 3 
 β = 30°∴ cosα = cos 60° = 1/2 cosβ cos 60° √3/2 
 = 1 : √3
-  If θ is positive acute angle and 7 cos²θ + 3 sin²θ = 4, then the value of θ is :
- 
                        View Hint View Answer Discuss in Forum 7 cos²θ + 3 sin²θ = 4 
 ⇒ 7 (1 – sin²θ) + 3 sin²θ = 4
 ⇒ 7 – 7 sin²θ + 3sin²θ = 4
 ⇒ 7 – 4 sin²θ = 4
 ⇒ 4 sin²θ = 7 – 4 = 3⇒ sin²θ = 3 4 ⇒ sinθ = √3 2 
 ∵0 < q < 90°
 ⇒ θ = 60°Correct Option: A7 cos²θ + 3 sin²θ = 4 
 ⇒ 7 (1 – sin²θ) + 3 sin²θ = 4
 ⇒ 7 – 7 sin²θ + 3sin²θ = 4
 ⇒ 7 – 4 sin²θ = 4
 ⇒ 4 sin²θ = 7 – 4 = 3⇒ sin²θ = 3 4 ⇒ sinθ = √3 2 
 ∵0 < q < 90°
 ⇒ θ = 60°
-  If tanθ = 4/3, then the value of3sinθ + 2cosθ is : 3sinθ - 2cosθ 
- 
                        View Hint View Answer Discuss in Forum tanθ = 4 3 Expression = 3sinθ + 2cosθ 3sinθ - 2cosθ 
 On dividing numerator and denominator by cosθ,= 3sinθ + 2cosθ cosθ cos;θ 3sinθ - 2cosθ cosθ cosθ = 3tanθ + 2 3tanθ - 2 = 3 × 4 + 2 3 3 × 4 - 2 3 = 4 + 2 = 6 4 - 2 2 Correct Option: Ctanθ = 4 3 Expression = 3sinθ + 2cosθ 3sinθ - 2cosθ 
 On dividing numerator and denominator by cosθ,= 3sinθ + 2cosθ cosθ cos;θ 3sinθ - 2cosθ cosθ cosθ = 3tanθ + 2 3tanθ - 2 = 3 × 4 + 2 3 3 × 4 - 2 3 = 4 + 2 = 6 4 - 2 2 
-  If sec (4x – 50°) = cosec (50° – x), then the value of x is
- 
                        View Hint View Answer Discuss in Forum sec (4x – 50°) = sec (50° – x) 
 ⇒ sec (4x – 50°) = sec (90° – (50° – x)) = sec (40° + x)
 ⇒ 4x – 50° = 40° + x
 ⇒ 4x – x = 50° + 40°
 ⇒ 3x = 90°⇒ x = 90° = 30° 3 Correct Option: Csec (4x – 50°) = sec (50° – x) 
 ⇒ sec (4x – 50°) = sec (90° – (50° – x)) = sec (40° + x)
 ⇒ 4x – 50° = 40° + x
 ⇒ 4x – x = 50° + 40°
 ⇒ 3x = 90°⇒ x = 90° = 30° 3 
 
	