Trigonometry
-  Find the value of 1 – 2 sin²θ + sin4θ.
- 
                        View Hint View Answer Discuss in Forum 1 – 2 sin²θ + sin4 θ 
 = (1 – sin²θ)² = (cos²θ)² = cos4θCorrect Option: B1 – 2 sin²θ + sin4 θ 
 = (1 – sin²θ)² = (cos²θ)² = cos4θ
-  The simplest value of cot 9° cot 27° cot 63° cot 81° is
- 
                        View Hint View Answer Discuss in Forum Expression 
 = cot 9°. cot 27°. cot 63° . cot 81°
 = cot 9°. cot 27°. cot (90° – 27°) . cot (90° – 9°)
 = cot 9° . cot 27° . tan 27° . tan 9° [tan (90° – θ)
 = cot θ; cot (90° – θ) = tan θ ]
 = cot 9° . tan 9° . cot 27° tan 27°
 = 1 [tan θ . cot θ = 1]Correct Option: BExpression 
 = cot 9°. cot 27°. cot 63° . cot 81°
 = cot 9°. cot 27°. cot (90° – 27°) . cot (90° – 9°)
 = cot 9° . cot 27° . tan 27° . tan 9° [tan (90° – θ)
 = cot θ; cot (90° – θ) = tan θ ]
 = cot 9° . tan 9° . cot 27° tan 27°
 = 1 [tan θ . cot θ = 1]
-  If (1 + sin A) (1 + sin B) (1 + sin C) = (1 – sin A) (1 – sin B) (1 – sin C), 0 < A, B, C < (π / 2) then each side is equal to
- 
                        View Hint View Answer Discuss in Forum (1 + sin A) (1 + sin B) (1 + sin C) = (1 – sin A) . (1 – sin B) (1 – sin C) = x (Let) 
 ∴ x . x = (1 + sin A) (1 + sin B) (1 + sin C) (1 – sin A) (1 – sin B) (1 – sin C)
 ⇒ x² = (1 – sin² A) (1 – sin² B) (1 – sin² C)
 ⇒ x² = cos²A . cos²B . cos²C
 ⇒x = ± cos A . cos B . cos C
 ∵ 0 < A, B, C < π 2 
 ∴ x = cos A . cos B . cos CCorrect Option: B(1 + sin A) (1 + sin B) (1 + sin C) = (1 – sin A) . (1 – sin B) (1 – sin C) = x (Let) 
 ∴ x . x = (1 + sin A) (1 + sin B) (1 + sin C) (1 – sin A) (1 – sin B) (1 – sin C)
 ⇒ x² = (1 – sin² A) (1 – sin² B) (1 – sin² C)
 ⇒ x² = cos²A . cos²B . cos²C
 ⇒x = ± cos A . cos B . cos C
 ∵ 0 < A, B, C < π 2 
 ∴ x = cos A . cos B . cos C
-  The value of q, which satisfies the equation tan²θ + 3 = 3 secθ, 0° ≤ θ < 90° is
- 
                        View Hint View Answer Discuss in Forum tan²θ + 3 = 3 sec θ 
 ⇒ sec²θ – 1 + 3 = 3 sec θ
 ⇒ sec²θ – 3 sec θ + 2 = 0
 ⇒ sec²θ – 2 sec θ – sec θ + 2 = 0
 ⇒ secθ (sec θ – 2) – 1 (sec θ – 2) = 0
 ⇒ (sec θ – 2) (sec θ – 1) = 0
 ⇒ secθ = 2 or 1
 ⇒ θ = 60° or 0°.Correct Option: Dtan²θ + 3 = 3 sec θ 
 ⇒ sec²θ – 1 + 3 = 3 sec θ
 ⇒ sec²θ – 3 sec θ + 2 = 0
 ⇒ sec²θ – 2 sec θ – sec θ + 2 = 0
 ⇒ secθ (sec θ – 2) – 1 (sec θ – 2) = 0
 ⇒ (sec θ – 2) (sec θ – 1) = 0
 ⇒ secθ = 2 or 1
 ⇒ θ = 60° or 0°.
-  If sin θ = 0.7, then cos q, 0 ≤ θ < 90°, is
- 
                        View Hint View Answer Discuss in Forum sin θ = 0.7 
 ∴ cos θ
 = √1 - sin² θ= √1 - (0.7)²
 = √1 - 0.49= √0.51Correct Option: Csin θ = 0.7 
 ∴ cos θ
 = √1 - sin² θ= √1 - (0.7)²
 = √1 - 0.49= √0.51
 
	